Chapter 8

Application: Programming Language Semantics
Programming Language Semantics

Software Foundations Book

- PM intro
- PM bigstep semantics
- Demo MyWhile.thy
- PM smallstep semantics
- Denotational semantics
- Axiomatic semantics: Hoare Logic.
- Demo MyHoare.thy
Why Formal Semantics?

- Programming language design
 - Formal verification of language properties
 - Reveal ambiguities
 - Support for standardization
- Implementation of programming languages
 - Compilers
 - Interpreters
 - Portability
- Reasoning about programs
 - Formal verification of program properties
 - Extended static checking
Language Properties

- Type safety:
 In each execution state, a variable of type T holds a value of T or a subtype of T

- Very important question for language designers

- Example:
 If String is a subtype of Object, should String[] be a subtype of Object[]?
Language Properties

- Type safety:
 In each execution state, a variable of type T holds a value of T or a subtype of T

- Very important question for language designers

- Example:
 If String is a subtype of Object, should String[] be a subtype of Object[]?

```java
void m(Object[] oa) {
    oa[0] = new Integer(5);
}
String[] sa = new String[10];
m(sa);
String s = sa[0];
```
Language Definition

- State of a program execution
- Transformation of states

- Dynamic Semantics

- Type rules
- Name resolution

- Static Semantics

- Syntax rules, defined by grammar

- Syntax
Compilation and Execution

- Scanning, Parsing
- Abstract Syntax Tree
- Semantic Analysis, Type Checking
- Annotated Abstract Syntax Tree
- Execution

Peter Müller—Semantics of Programming Languages, SS04 p. 13
Three Kinds of Semantics

► Operational semantics
 - Describes execution on an **abstract machine**
 - Describes how the effect is achieved

► Denotational semantics
 - Programs are regarded as **functions** in a mathematical domain
 - Describes **only the effect**, not how it is obtained

► Axiomatic semantics
 - **Specifies properties** of the effect of executing a program are expressed
 - Some aspects of the computation may be **ignored**

Peter Müller—Semantics of Programming Languages, SS04 - p.14
Operational Semantics

```
y := 1;
while not(x=1) do ( y := x*y; x := x-1 )
```

- “First we assign 1 to \(y \), then we test whether \(x \) is 1 or not. If it is then we stop and otherwise we update \(y \) to be the product of \(x \) and the previous value of \(y \) and then we decrement \(x \) by 1. Now we test whether the new value of \(x \) is 1 or not. . . ”

- Two kinds of operational semantics
 - Natural Semantics
 - Structural Operational Semantics
Denotational Semantics

```plaintext
y := 1;
while not(x=1) do ( y := x*y; x := x-1 )
```

- “The program computes a partial function from states to states: the final state will be equal to the initial state except that the value of x will be 1 and the value of y will be equal to the factorial of the value of x in the initial state”

- Two kinds of denotational semantics
 - Direct Style Semantics
 - Continuation Style Semantics
Axiomatic Semantics

\[
\begin{align*}
y &:= 1; \\
\text{while } \neg(x=1) \text{ do } (y := x*y; x := x-1)
\end{align*}
\]

- "If \(x = n \) holds before the program is executed then \(y = n! \) will hold when the execution terminates (if it terminates)"

- Two kinds of axiomatic semantics
 - Partial correctness
 - Total correctness
Abstraction

Concrete language implementation

Operational semantics

Denotational semantics

Axiomatic semantics

Abstract description
Selection Criteria

- Constructs of the programming language
 - Imperative
 - Functional
 - Concurrent
 - Object-oriented
 - Non-deterministic
 - Etc.

- Application of the semantics
 - Understanding the language
 - Program verification
 - Prototyping
 - Compiler construction
 - Program analysis
 - Etc.
The Language IMP

- **Expressions**
 - Boolean and arithmetic expressions
 - No side-effects in expressions

- **Variables**
 - All variables range over integers
 - All variables are initialized
 - No global variables

- **IMP does not include**
 - Heap allocation and pointers
 - Variable declarations
 - Procedures
 - Concurrency
Syntax of IMP: Characters and Tokens

Characters

Letter = 'A' ... 'z' | 'a' ... 'z'
Digit = '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'

Tokens

Ident = Letter { Letter | Digit }
Integer = Digit { Digit }
Var = Ident
Syntax of IMP: Expressions

Arithmetic expressions

\[
\begin{align*}
A\text{exp} & = A\text{exp} \ O p \ A\text{exp} \ | \ V a r \ | \ I n t e g e r \\
O p & = '+' \ | \ '-' \ | \ '*' \ | \ '/' \ | \ 'mod'
\end{align*}
\]

Boolean expressions

\[
\begin{align*}
B\text{exp} & = B\text{exp} \ 'or' \ B\text{exp} \ | B\text{exp} \ 'and' \ B\text{exp} \\
& \ | \ 'not' \ B\text{exp} \ | \ A\text{exp} \ R e l O p \ A\text{exp} \\
R e l O p & = '=' \ | \ '#' \ | \ '<' \ | \ '<=' \ | \ '>' \ | \ '>='
\end{align*}
\]
Syntax of IMP: Statements

\[\text{Stm} = '\text{skip}' \]

\[\text{Var} ':=' \text{Aexp} \]

\[\text{Stm} ';' \text{Stm} \]

\['\text{if} \ ' \text{Bexp} '\text{then} \ ' \text{Stm} '\text{else} \ ' \text{Stm} '\text{end}' \]

\['\text{while} \ ' \text{Bexp} '\text{do} \ ' \text{Stm} '\text{end}' \]
Notation

Meta-variables (written in *italic* font)

- x, y, z for variables (Var)
- e, e', e_1, e_2 for arithmetic expressions (Aexp)
- b, b_1, b_2 for boolean expressions (Bexp)
- s, s', s_1, s_2 for statements (Stm)

Keywords are written in *typewriter* font

Peter Müller—Semantics of Programming Languages, SS04 p.34
Syntax of IMP: Example

res := 1;
while n > 1 do
 res := res * n;
 n := n - 1
end
Semantic Categories

Syntactic category: Integer Semantic category: $\text{Val} = \mathbb{Z}$

$$
\begin{align*}
101 & \rightarrow 5 \\
101 & \rightarrow 101
\end{align*}
$$

- Semantic functions map elements of syntactic categories to elements of semantic categories
- To define the semantics of IMP, we need semantic functions for
 - Arithmetic expressions (syntactic category Aexp)
 - Boolean expressions (syntactic category Bexp)
 - Statements (syntactic category Stm)
States

- The meaning of an expression depends on the values bound to the variables that occur in it
- A state associates a value to each variable

State : Var → Val

- We represent a state σ as a finite function

$$\sigma = \{ x_1 \rightarrow v_1, x_2 \rightarrow v_2, \ldots, x_n \rightarrow v_n \}$$

where x_1, x_2, \ldots, x_n are different elements of Var and v_1, v_2, \ldots, v_n are elements of Val.
Semantics of Arithmetic Expressions

The semantic function

\[A : \text{Aexp} \rightarrow \text{State} \rightarrow \text{Val} \]

maps an arithmetic expression \(e \) and a state \(\sigma \) to a value \(A[e] \sigma \)

\[
A[x] \sigma = \sigma(x) \\
A[i] \sigma = i \quad \text{for} \ i \in \mathbb{Z} \\
A[e_1 \ op \ e_2] \sigma = A[e_1] \sigma \overline{\text{op}} A[e_2] \sigma \quad \text{for} \ \text{op} \in \text{Op}
\]

\(\overline{\text{op}} \) is the operation \(\text{Val} \times \text{Val} \rightarrow \text{Val} \) corresponding to \(\text{op} \)

Peter Müller—Semantics of Programming Languages, SS04 = p.39
Semantics of Boolean Expressions

The semantic function

\[B : \text{Bexp} \rightarrow \text{State} \rightarrow \text{Bool} \]

maps a boolean expression \(b \) and a state \(\sigma \) to a truth value \(B[b]\sigma \)

\[
B[e_1 \text{ op } e_2]\sigma = \begin{cases}
 \text{tt} & \text{if } A[e_1]\sigma \text{ op } A[e_2]\sigma \\
 \text{ff} & \text{otherwise}
\end{cases}
\]

\(\text{op} \in \text{RelOp} \) and \(\text{op} \) is the relation \(\text{Val} \times \text{Val} \) corresponding to \(\text{op} \)
Boolean Expressions (cont’d)

\[
\begin{align*}
B[b_1 \text{ or } b_2]_\sigma &= \begin{cases}
tt & \text{if } B[b_1]_\sigma = \tt \text{ or } B[b_2]_\sigma = \tt \\
ff & \text{otherwise}
\end{cases} \\
B[b_1 \text{ and } b_2]_\sigma &= \begin{cases}
\tt & \text{if } B[b_1]_\sigma = \tt \text{ and } B[b_2]_\sigma = \tt \\
ff & \text{otherwise}
\end{cases} \\
B[\text{not } b]_\sigma &= \begin{cases}
\tt & \text{if } B[b]_\sigma = \ff \\
ff & \text{otherwise}
\end{cases}
\end{align*}
\]
Operational Semantics of Statements

- Evaluation of an expression in a state yields a value
 \[x + 2 \times y \]
 \[\mathcal{A} : \text{Aexp} \rightarrow \text{State} \rightarrow \text{Val} \]

- Execution of a statement modifies the state
 \[x := 2 \times y \]

- Operational semantics describe how the state is modified during the execution of a statement
Big-Step and Small-Step Semantics

- Big-step semantics describe how the overall results of the executions are obtained
 - Natural semantics

- Small-step semantics describe how the individual steps of the computations take place
 - Structural operational semantics
 - Abstract state machines
Transition Systems

A transition system is a tuple \((\Gamma, T, \triangleright)\)
- \(\Gamma\): a set of configurations
- \(T\): a set of terminal configurations, \(T \subseteq \Gamma\)
- \(\triangleright\): a transition relation, \(\triangleright \subseteq \Gamma \times \Gamma\)

Example: Finite automaton

\[
\Gamma = \{\langle w, S \rangle \mid w \in \{a, b, c\}^*, S \in \{1, 2, 3, 4\}\}
\]
\[
T = \{\langle \epsilon, S \rangle \mid S \in \{1, 2, 3, 4\}\}
\]
\[
\triangleright = \{(\langle aw, 1 \rangle \rightarrow \langle w, 2 \rangle), (\langle aw, 1 \rangle \rightarrow \langle w, 3 \rangle),
\quad (\langle bw, 2 \rangle \rightarrow \langle w, 4 \rangle), (\langle cw, 3 \rangle \rightarrow \langle w, 4 \rangle)\}\}
\]
Transitions in Natural Semantics

- Two types of configurations for operational semantics
 1. \(\langle s, \sigma \rangle \), which represents that the statement \(s \) is to be executed in state \(\sigma \)
 2. \(\sigma \), which represents a terminal state

- The transition relation \(\rightarrow \) describes how executions take place
 - Typical transition: \(\langle s, \sigma \rangle \rightarrow \sigma' \)
 - Example: \(\langle \text{skip}, \sigma \rangle \rightarrow \sigma \)

\[
\begin{align*}
\Gamma &= \{ \langle s, \sigma \rangle \mid s \in \text{Stm}, \sigma \in \text{State} \} \cup \text{State} \\
T &= \text{State} \\
\rightarrow &\subseteq \{ \langle s, \sigma \rangle \mid s \in \text{Stm}, \sigma \in \text{State} \} \times \text{State}
\end{align*}
\]
Rules

Transition relation is specified by rules

\[
\frac{\varphi_1, \ldots, \varphi_n}{\psi} \quad \text{if } Condition
\]

where \(\varphi_1, \ldots, \varphi_n \) and \(\psi \) are transitions

Meaning of the rule

If \(Condition \) and \(\varphi_1, \ldots, \varphi_n \) then \(\psi \)

Terminology

- \(\varphi_1, \ldots, \varphi_n \) are called premises
- \(\psi \) is called conclusion
- A rule without premises is called axiom

Peter Müller—Semantics of Programming Languages, SS04 p.62
Notation

- Updating States: $\sigma[y \mapsto v]$ is the function that
 - overrides the association of y in σ by $y \mapsto v$ or
 - adds the new association $y \mapsto v$ to σ

\[
(\sigma[y \mapsto v])(x) = \begin{cases}
 v & \text{if } x = y \\
 \sigma(x) & \text{if } x \neq y
\end{cases}
\]
Natural Semantics of IMP

- **skip** does not modify the state
 \[\langle \text{skip}, \sigma \rangle \rightarrow \sigma\]

- **x := e** assigns the value of \(e\) to variable \(x\)
 \[\langle x := e, \sigma \rangle \rightarrow \sigma[x \leftarrow A[e]\sigma]\]

- **Sequential composition** \(s_1 ; s_2\)
 - First, \(s_1\) is executed in state \(\sigma\), leading to \(\sigma'\)
 - Then \(s_2\) is executed in state \(\sigma'\)
 \[\langle s_1, \sigma \rangle \rightarrow \sigma', \langle s_2, \sigma' \rangle \rightarrow \sigma''\]
 \[\langle s_1 ; s_2, \sigma \rangle \rightarrow \sigma''\]
Natural Semantics of IMP (cont’d)

- Conditional statement \(\text{if } b \text{ then } s_1 \text{ else } s_2 \text{ end}\)
 - If \(b\) holds, \(s_1\) is executed
 - If \(b\) does not hold, \(s_2\) is executed

\[
\begin{align*}
\Delta \sigma \rightarrow \sigma' & \quad \text{if } B[b]\sigma = \text{tt} \\
\Delta \sigma \rightarrow \sigma' & \quad \text{if } B[b]\sigma = \text{ff}
\end{align*}
\]
Natural Semantics of IMP (cont’d)

- Loop statement \(\text{while } b \text{ do } s \text{ end} \)
 - If \(b \) holds, \(s \) is executed once, leading to state \(\sigma' \)
 - Then the whole while-statement is executed again \(\sigma' \)

\[
\langle s, \sigma \rangle \rightarrow \sigma', \langle \text{while } b \text{ do } s \text{ end}, \sigma' \rangle \rightarrow \sigma'' \quad \text{if } B[b] \sigma = \text{tt}
\]

- If \(b \) does not hold, the while-statement does not modify the state

\[
\langle \text{while } b \text{ do } s \text{ end}, \sigma \rangle \rightarrow \sigma \quad \text{if } B[b] \sigma = \text{ff}
\]
Rule Instantiations

- Rules are actually *rule schemes*
 - Meta-variables stand for arbitrary variables, expressions, statements, states, etc.
 - To apply rules, they have to be *instantiated* by selecting particular variables, expressions, statements, states, etc.

- Assignment rule *scheme*
 \[\langle x := e, \sigma \rangle \rightarrow \sigma[x \mapsto A[e] \sigma] \]

- Assignment rule *instance*
 \[\langle v := v + 1, \{ v \mapsto 3 \} \rangle \rightarrow \{ v \mapsto 4 \} \]
Derivations: Example

What is the final state if statement

\[
\begin{align*}
z & := x; \quad x := y; \quad y := z
\end{align*}
\]

is executed in state \(\{ x \mapsto 5, y \mapsto 7, z \mapsto 0 \} \)
(abbreviated by \([5, 7, 0]\))?

\[
\begin{align*}
\langle z := x, [5, 7, 0] \rangle & \rightarrow [5, 7, 5], \\
\langle x := y, [5, 7, 5] \rangle & \rightarrow [7, 7, 5] \\
\langle z := x; \quad x := y, [5, 7, 0] \rangle & \rightarrow [7, 7, 5] \\
\langle y := z, [7, 7, 5] \rangle & \rightarrow [7, 5, 5] \\
\langle z := x; \quad x := y; \quad y := z, [5, 7, 0] \rangle & \rightarrow [7, 5, 5]
\end{align*}
\]
Derivation Trees

- Rule instances can be combined to derive a transition $\langle s, \sigma \rangle \rightarrow \sigma'$

- The result is a **derivation tree**
 - The root is the transition $\langle s, \sigma \rangle \rightarrow \sigma'$
 - The leaves are axiom instances
 - The internal nodes are conclusions of rule instances and have the corresponding premises as immediate children

- The conditions of all instantiated rules must be satisfied

- There can be several derivations for one transition (non-deterministic semantics)
Termination

- The execution of a statement \(s \) in state \(\sigma \)
 - **terminates** iff there is a state \(\sigma' \) such that \(\langle s, \sigma \rangle \rightarrow \sigma' \)
 - **loops** iff there is no state \(\sigma' \) such that \(\langle s, \sigma \rangle \rightarrow \sigma' \)

- A statement \(s \)
 - **always terminates** if the execution in a state \(\sigma \) terminates for all choices of \(\sigma \)
 - **always loops** if the execution in a state \(\sigma \) loops for all choices of \(\sigma \)
Semantic Equivalence

Definition

Two statements s_1 and s_2 are **semantically equivalent** (denoted by $s_1 \equiv s_2$) if the following property holds for all states σ, σ':

$$\langle s_1, \sigma \rangle \rightarrow \sigma' \iff \langle s_2, \sigma \rangle \rightarrow \sigma'$$

Example

```
while b do s end \equiv
if b then s; while b do s end
```
Structural Operational Semantics

- The emphasis is on the individual steps of the execution
 - Execution of assignments
 - Execution of tests
- Describing small steps of the execution allows one to express the order of execution of individual steps
 - Interleaving computations
 - Evaluation order for expressions (not shown in the course)
- Describing always the next small step allows one to express properties of looping programs
Transitions in SOS

- The configurations are the same as for natural semantics.
- The transition relation \rightarrow_1 can have two forms:
 - $\langle s, \sigma \rangle \rightarrow_1 \langle s', \sigma' \rangle$: the execution of s from σ is not completed and the remaining computation is expressed by the intermediate configuration $\langle s', \sigma' \rangle$.
 - $\langle s, \sigma \rangle \rightarrow_1 \sigma'$: the execution of s from σ has terminated and the final state is σ'.
- A transition $\langle s, \sigma \rangle \rightarrow_1 \gamma$ describes the first step of the execution of s from σ.
Transition System

\[\Gamma = \{ \langle s, \sigma \rangle \mid s \in \text{Stm}, \sigma \in \text{State} \} \cup \text{State} \]
\[T = \text{State} \]
\[\rightarrow_1 \subseteq \{ \langle s, \sigma \rangle \mid s \in \text{Stm}, \sigma \in \text{State} \} \times \Gamma \]

- We say that \(\langle s, \sigma \rangle \) is **stuck** if there is no \(\gamma \) such that \(\langle s, \sigma \rangle \rightarrow_1 \gamma \)
SOS of IMP

- skip does not modify the state
 \[\langle \text{skip}, \sigma \rangle \rightarrow_1 \sigma \]

- \(x := e \) assigns the value of \(e \) to variable \(x \)
 \[\langle x := e, \sigma \rangle \rightarrow_1 \sigma[x \mapsto A[e] \sigma] \]

- skip and assignment require only one step

- Rules are analogous to natural semantics
 \[\langle \text{skip}, \sigma \rangle \rightarrow \sigma \]
 \[\langle x := e, \sigma \rangle \rightarrow \sigma[x \mapsto A[e] \sigma] \]

Peter Müller — Semantics of Programming Languages, SS04 – p.103
SOS of IMP: Sequential Composition

- Sequential composition $s_1; s_2$
- First step of executing $s_1; s_2$ is the first step of executing s_1
- s_1 is executed in one step

\[
\begin{align*}
\langle s_1, \sigma \rangle &\rightarrow_1 \sigma' \\
\langle s_1; s_2, \sigma \rangle &\rightarrow_1 \langle s_2, \sigma' \rangle
\end{align*}
\]

- s_1 is executed in several steps

\[
\begin{align*}
\langle s_1, \sigma \rangle &\rightarrow_1 \langle s'_1, \sigma' \rangle \\
\langle s_1; s_2, \sigma \rangle &\rightarrow_1 \langle s'_1; s_2, \sigma' \rangle
\end{align*}
\]
SOS of IMP: Conditional Statement

- The first step of executing if b then s_1 else s_2 end is to determine the outcome of the test and thereby which branch to select.

\[
\langle \text{if } b \text{ then } s_1 \text{ else } s_2 \text{ end}, \sigma \rangle \rightarrow_1 \langle s_1, \sigma \rangle \quad \text{if } B[b] \sigma = \text{tt} \\
\langle \text{if } b \text{ then } s_1 \text{ else } s_2 \text{ end}, \sigma \rangle \rightarrow_1 \langle s_2, \sigma \rangle \quad \text{if } B[b] \sigma = \text{ff}
\]
Alternative for Conditional Statement

The first step of executing \(\text{if } b \text{ then } s_1 \text{ else } s_2 \text{ end} \) is the first step of the branch determined by the outcome of the test

\[
\begin{align*}
\langle s_1, \sigma \rangle \rightarrow_1 \sigma' & \quad \text{if } B[b] \sigma = tt \\
\langle \text{if } b \text{ then } s_1 \text{ else } s_2 \text{ end}, \sigma \rangle \rightarrow_1 \sigma' & \quad \text{if } B[b] \sigma = tt
\end{align*}
\]

and two similar rules for \(B[b] \sigma = ff \)

- Alternatives are equivalent for IMP
- Choice is important for languages with parallel execution

Peter Müller—Semantics of Programming Languages, SS04 – p.106
SOS of IMP: Loop Statement

- The first step is to unrole the loop

\[
\begin{align*}
\langle \text{while } b \text{ do } s \text{ end, } \sigma \rangle & \rightarrow_1 \\
\langle \text{if } b \text{ then } s ; \text{while } b \text{ do } s \text{ end else skip end, } \sigma \rangle
\end{align*}
\]

- Recall that \texttt{while } \texttt{b do } \texttt{s end} and \texttt{if } \texttt{b then } \texttt{s ; while } \texttt{b do } \texttt{s end else skip end} are semantically equivalent in the natural semantics
Alternatives for Loop Statement

- The first step is to decide the outcome of the test and thereby whether to unrole the body of the loop or to terminate.

\[
\langle \text{while } b \text{ do } s \text{ end}, \sigma \rangle \rightarrow_1 \langle s; \text{while } b \text{ do } s \text{ end}, \sigma \rangle \quad \text{if } B[b] \sigma = tt
\]

\[
\langle \text{while } b \text{ do } s \text{ end}, \sigma \rangle \rightarrow_1 \sigma \quad \text{if } B[b] \sigma = ff
\]

- Or combine with the alternative semantics of the conditional statement

- Alternatives are equivalent for IMP
Derivation Sequences

- A **derivation sequence** of a statement s starting in state σ is a sequence $\gamma_0, \gamma_1, \gamma_2, \ldots$, where
 - $\gamma_0 = \langle s, \sigma \rangle$
 - $\gamma_i \rightarrow_1 \gamma_{i+1}$ for $0 \leq i$

- A derivation sequence is either **finite** or **infinite**
 - Finite derivation sequences end with a configuration that is either a terminal configuration or a stuck configuration

- **Notation**
 - $\gamma_0 \rightarrow_1^i \gamma_i$ indicates that there are i steps in the execution from γ_0 to γ_i
 - $\gamma_0 \rightarrow_1^* \gamma_i$ indicates that there is a **finite number of steps** in the execution from γ_0 to γ_i
 - $\gamma_0 \rightarrow_1^* \gamma_i$ and $\gamma_0 \rightarrow_1^* \gamma_i$ need **not** be derivation sequences

Peter Müller—Semantics of Programming Languages, SS04 – p.109
Derivation Sequences: Example

What is the final state if statement

\[
z := x; \quad x := y; \quad y := z
\]

is executed in state \{ x \mapsto 5, y \mapsto 7, z \mapsto 0 \}?
Derivation Trees

- Derivation trees explain why transitions take place
- For the first step

\[
\langle z := x; \ x := y; \ y := z, \sigma \rangle \rightarrow_1 \langle x := y; \ y := z, \sigma[z \mapsto 5] \rangle
\]

the derivation tree is

\[
\begin{align*}
\langle z := x, \sigma \rangle & \rightarrow_1 \sigma[z \mapsto 5] \\
\langle z := x; \ x := y, \sigma \rangle & \rightarrow_1 \langle x := y, \sigma[z \mapsto 5] \rangle \\
\langle z := x; \ x := y; \ y := z, \sigma \rangle & \rightarrow_1 \langle x := y; \ y := z, \sigma[z \mapsto 5] \rangle
\end{align*}
\]

- \(z := x; \ (x := y; \ y := z) \) would lead to a simpler tree with only one rule application
Derivation Sequences and Trees

- **Natural (big-step) semantics**
 - The execution of a statement (sequence) is described by one big transition
 - The big transition can be seen as trivial derivation sequence with exactly one transition
 - The derivation tree explains why this transition takes place

- **Structural operational (small-step) semantics**
 - The execution of a statement (sequence) is described by one or more transitions
 - Derivation sequences are important
 - Derivation trees justify each individual step in a derivation sequence
Termination

- The execution of a statement s in state σ
 - **terminates** iff there is a finite derivation sequence starting with $\langle s, \sigma \rangle$
 - **loops** iff there is an infinite derivation sequence starting with $\langle s, \sigma \rangle$

- The execution of a statement s in state σ
 - **terminates successfully** if $\langle s, \sigma \rangle \rightarrow^*_1 \sigma'$
 - In IMP, an execution terminates successfully iff it terminates (no stuck configurations)
Comparison: Summary

Natural Semantics

- Local variable declarations and procedures can be modeled easily
- No distinction between abortion and loopsing
- Non-determinism suppresses looping (if possible)
- Parallelism cannot be modeled

Structural Operational Semantics

- Local variable declarations and procedures require modeling the execution stack
- Distinction between abortion and looping
- Non-determinism does not suppress looping
- Parallelism can be modeled
Motivation

- Operational semantics is at a rather low abstraction level
 - Some arbitrariness in choice of rules (e.g., size of steps)
 - Syntax involved in description of behavior

- Semantic equivalence in natural semantics

\[\langle s_1, \sigma \rangle \rightarrow \sigma' \iff \langle s_2, \sigma \rangle \rightarrow \sigma' \]

- Idea
 - We can describe the behavior on an abstract level if we are only interested in equivalence
 - We specify only the partial function on states
Approach

- Denotational semantics describes the effect of a computation

- A semantic function is defined for each syntactic construct
 - maps syntactic construct to a mathematical object, often a function
 - the mathematical object describes the effect of executing the syntactic construct
Compositionality

In denotational semantics, semantic functions are defined \textit{compositionally}

There is a semantic clause for each of the basis elements of the syntactic category

For each method of constructing a composite element (in the syntactic category) there is a semantic clause defined in terms of the \textit{semantic function applied to the immediate constituents} of the composite element
Examples

The semantic functions $\mathcal{A} : \text{Aexp} \rightarrow \text{State} \rightarrow \text{Val}$ and $\mathcal{B} : \text{Bexp} \rightarrow \text{State} \rightarrow \text{Bool}$ are denotational definitions.

\[
\begin{align*}
\mathcal{A}[x] \sigma &= \sigma(x) \\
\mathcal{A}[i] \sigma &= i \quad \text{for } i \in \mathbb{Z} \\
\mathcal{A}[e_1 \text{ op } e_2] \sigma &= \mathcal{A}[e_1] \sigma \overline{\text{op}} \mathcal{A}[e_2] \sigma \quad \text{for } \text{op} \in \text{Op}
\end{align*}
\]

\[
\begin{align*}
\mathcal{B}[e_1 \text{ op } e_2] \sigma &= \begin{cases}
\text{tt} & \text{if } \mathcal{A}[e_1] \sigma \overline{\text{op}} \mathcal{A}[e_2] \sigma \\
\text{ff} & \text{otherwise}
\end{cases}
\end{align*}
\]
Counterexamples

- The semantic functions S_{NS} and S_{SOS} are not denotational definitions because they are not defined compositionally

\[
S_{NS} : \text{Stm} \to (\text{State} \leftrightarrow \text{State})
\]

\[
S_{NS}[s]_\sigma = \begin{cases}
\sigma' & \text{if } \langle s, \sigma \rangle \rightarrow \sigma' \\
\text{undefined} & \text{otherwise}
\end{cases}
\]

\[
S_{SOS} : \text{Stm} \to (\text{State} \leftrightarrow \text{State})
\]

\[
S_{SOS}[s]_\sigma = \begin{cases}
\sigma' & \text{if } \langle s, \sigma \rangle \rightarrow^* \sigma' \\
\text{undefined} & \text{otherwise}
\end{cases}
\]
Semantic Functions

- The effect of executing a statement is described by the partial function S_{DS}

$$S_{DS} : \text{Stm} \rightarrow (\text{State} \leftrightarrow \text{State})$$

- Partiality is needed to model non-termination

- The effects of evaluating expressions is defined by the functions A and B
Direct Style Semantics of IMP

- \texttt{skip} does not modify the state

\[S_{DS}[\texttt{skip}] = id \]

\[id : \text{State} \rightarrow \text{State} \]

\[id(\sigma) = \sigma \]

- \texttt{x:=e} assigns the value of \(e \) to variable \(x \)

\[S_{DS}[x:=e] \sigma = \sigma[x \mapsto A[e] \sigma] \]
Direct Style Semantics of IMP (cont’d)

- Sequential composition $s_1 ; s_2$

$$S_{DS}[s_1 ; s_2] = S_{DS}[s_2] \circ S_{DS}[s_1]$$

- Function composition \circ is defined in a **strict** way
 - If one of the functions is undefined on the given argument then the composition is undefined

$$ (f \circ g)\sigma = \begin{cases}
 f(g(\sigma)) & \text{if } g(\sigma) \neq \text{undefined} \\
 \text{undefined} & \text{otherwise}
\end{cases} $$

Peter Müller—Semantics of Programming Languages, SS04 – p.202
Direct Style Semantics of IMP (cont’d)

- **Conditional statement** \(\text{if } b \text{ then } s_1 \text{ else } s_2 \text{ end} \)

\[
S_{DS}[\text{if } b \text{ then } s_1 \text{ else } s_2 \text{ end}] = \text{cond}(\mathcal{B}[b], S_{DS}[s_1], S_{DS}[s_2])
\]

- **The function** \(\text{cond} \)
 - takes the semantic functions for the condition and the two statements
 - when supplied with a state selects the second or third argument depending on the first

\[
\text{cond} : (\text{State } \rightarrow \text{Bool}) \times (\text{State } \leftrightarrow \text{State}) \times (\text{State } \leftrightarrow \text{State}) \rightarrow (\text{State } \leftrightarrow \text{State})
\]
Definition of \textit{cond}

\[
\text{cond} : \ (\text{State} \rightarrow \text{Bool}) \times (\text{State} \leftrightarrow \text{State}) \times (\text{State} \leftrightarrow \text{State}) \\
\rightarrow (\text{State} \leftrightarrow \text{State})
\]

\[
\text{cond}(b, f, g)\sigma = \begin{cases}
 f(\sigma) & \text{if } b(\sigma) = \text{tt} \\
 g(\sigma) & \text{if } b(\sigma) = \text{ff} \\
 \text{undefined} & \text{otherwise}
\end{cases}
\]

Peter Müller—Semantics of Programming Languages, SS04 – p.204
Semantics of Loop: Observations

- Defining the semantics of `while` is difficult.
- The semantics of `while b do s end` must be equal to `if b then s; while b do s end else skip end`.
- This requirement yields:

\[
S_{DS}\left[\text{while } b \text{ do } s \text{ end}\right] = \text{cond}(B[b], S_{DS}\left[\text{while } b \text{ do } s \text{ end}\right] \circ S_{DS}[s], id)
\]

- We cannot use this equation as a definition because it is not compositional.
Functionals and Fixed Points

\[S_{DS}[\text{while } b \text{ do } s \text{ end}] = \]
\[\text{cond}(B[b], S_{DS}[\text{while } b \text{ do } s \text{ end}] \circ S_{DS}[s], id) \]

- The above equation has the form \(g = F(g) \)
 - \(g = S_{DS}[\text{while } b \text{ do } s \text{ end}] \)
 - \(F(g) = \text{cond}(B[b], g \circ S_{DS}[s], id) \)

- \(F \) is a **functional** (a function from functions to functions)

- \(S_{DS}[\text{while } b \text{ do } s \text{ end}] \) is a **fixed point** of the functional \(F \)
Direct Style Semantics of IMP: Loops

- Loop statement `while b do s end`

\[
S_{DS}[\text{while } b \text{ do } s \text{ end}] = \text{FIX } F
\]

where \(F(g) = \text{cond}(\mathcal{B}[b], g \circ S_{DS}[s], \text{id}) \)

- We write `FIX F` to denote the fixed point of the functional \(F \):

\[
\text{FIX : } ((\text{State } \leftrightarrow \text{State}) \rightarrow (\text{State } \leftrightarrow \text{State})) \\
\rightarrow (\text{State } \leftrightarrow \text{State})
\]

- This definition of \(S_{DS}[\text{while } b \text{ do } s \text{ end}] \) is compositional

Peter Müller—Semantics of Programming Languages, SS04 – p.208
Example

Consider the statement

```
while x ≠ 0 do skip end
```

The functional for this loop is defined by

\[
F'(g)\sigma = \text{cond}(B[x#0], g \circ S_{DS}[\text{skip}], id)\sigma
\]

\[
= \text{cond}(B[x#0], g \circ id, id)\sigma
\]

\[
= \text{cond}(B[x#0], g, id)\sigma
\]

\[
= \begin{cases}
g(\sigma) & \text{if } \sigma(x) \neq 0 \\
\sigma & \text{if } \sigma(x) = 0
\end{cases}
\]
Example (cont’d)

- The function

\[g_1(\sigma) = \begin{cases}
 \text{undefined} & \text{if } \sigma(x) \neq 0 \\
 \sigma & \text{if } \sigma(x) = 0
\end{cases} \]

is a fixed point of \(F' \)

- The function \(g_2(\sigma) = \text{undefined} \) is not a fixed point for \(F' \)
Well-Definedness

\[
S_{DS}[\text{while } b \text{ do } s \text{ end}] = \text{FIX } F
\]
where \(F(g) = \text{cond}(B[b], g \circ S_{DS}[s], id) \)

The function \(S_{DS}[\text{while } b \text{ do } s \text{ end}] \) is well-defined if \(\text{FIX } F \) defines a **unique fixed point** for the functional \(F \)

- There are functionals that have more than one fixed point
- There are functionals that have no fixed point at all
Examples

- \(F' \) from the previous example has more than one fixed point

\[
F'(g)\sigma = \begin{cases}
 g(\sigma) & \text{if } \sigma(x) \neq 0 \\
 \sigma & \text{otherwise}
\end{cases}
\]

- Every function \(g' : \text{State} \rightarrow \text{State} \) with \(g'(\sigma) = \sigma \) if \(\sigma(x) = 0 \) is a fixed point for \(F' \)

- The functional \(F_1 \) has no fixed point if \(g_1 \neq g_2 \)

\[
F_1(g) = \begin{cases}
 g_1 & \text{if } g = g_2 \\
 g_2 & \text{otherwise}
\end{cases}
\]
Hoare Logic

Hoare axioms and rules for simple while languages

▶ { P } skip { P }
▶ { P[x/e] } x := e { P }
▶ { P } c1 { R }, { R } c2 { Q } => { P } c1;c2 { Q }
▶ { P ∧ b } c1 { Q }, { P ∧ !b } c2 { Q } =>
 { P } if b then c1 else c2 { Q }
▶ { INV ∧ b } c { INV } => { INV } while b do c { INV ∧ !b }
▶ P → P’, { P’ } c { Q’ }, Q’ → Q => { P } c { Q }
▶ Semantics of the Hoare Logic:
▶ { P } c { Q } == (ALL s. (P(s) ∧ s -c-> t) → P(t))
Hoare Logic

Example

\{ 0 \leq x \}
\begin{align*}
c & := 0 ;
sq & := 1 ;
\textbf{WHILE } \sq \leq x \textbf{ DO } (* \text{INV}=(c\cdot c \leq x \& \sq=(c+1)\cdot(c+1))*)
& \quad c \ := \ c + 1 ;
& \quad \sq \ := \ \sq + (2\cdot c + 1) ;
\end{align*}
\begin{align*}
\{ \ c\cdot c \leq x \ & \& x < (c+1)\cdot(c+1) \}
\end{align*}

Demo: MyHoare.thy