Übungen zur Vorlesung Logik

Prof. Dr. Klaus Madlener

Blatt 3

9. Aufgabe: [vollständige Operatormengen, 8P]

Es sei OP eine Menge von Operatoren. Die Menge F(OP) der Formeln in den Operatoren aus OP ist definiert durch:

- 1. $V \subseteq F(OP)$.
- 2. Ist $A \in F(OP)$, und ist $\# \in OP$ ein einstelliger Operator, so ist $(\#A) \in F(OP)$.
- 3. Sind $A, B \in F(OP)$, und ist $\star \in OP$ ein zweistelliger Operator, so ist $(A \star B) \in F(OP)$.
- 4. Sind $A_1, \ldots, A_n \in F(OP)$, und ist $\star \in OP$ ein *n*-stelliger Operator $(n \geq 3)$, so ist $(\star A_1 \ldots A_n) \in F(OP)$.
- 5. F(OP) ist die kleinste Menge mit diesen Eigenschaften.

Zeigen Sie, dass folgende Aussagen über OP äquivalent sind:

- 1. OP ist eine vollständige Operatormenge.
- 2. Für alle $n \in \mathbb{N} \setminus \{0\}$ und alle Funktionen $f : \mathbb{B}^n \to \mathbb{B}$ gibt es ein $A \in F(OP)$ mit $f = f_A$.
- 3. Für alle Funktionen $f: \mathbb{B}^2 \to \mathbb{B}$ gibt es ein $A \in F(OP)$ mit $f = f_A$.

10. Aufgabe: [Boolesche Funktionen, 5P]

Zeigen Sie: Jede Boolesche Funktion $f: \mathbb{B}^n \to \mathbb{B}, n > 0$ lässt sich durch eine Aussageform $A(p_1, \dots p_n)$ in den Variablen $p_1 \dots p_n$ und mit den Operatoren \neg, \to im Sinne von Folie 37 darstellen.

11. Aufgabe: [Kalkül \mathcal{F}_0 , 2P]

Zeigen Sie: $\vdash_{\mathcal{F}_0} B \to \neg \neg B$

12. Aufgabe: [Kalkül \mathcal{F}_0 , 7P]

Zeigen Sie ohne Verwendung des Deduktionstheorems:

- 1. $A \rightarrow (B \rightarrow C), B, A \vdash_{\mathcal{F}_0} C$
- 2. $A \rightarrow (B \rightarrow C), B \vdash_{\mathcal{F}_0} A \rightarrow C$
- 3. $A \to (B \to C) \vdash_{\mathcal{F}_0} B \to (A \to C)$

Tipp: Die Ableitungen können durch Anwendung der Techniken aus dem Beweis des Deduktionstheorems jeweils aus der vorherigen konstruiert werden.

Abgabe: bis 29. April 2008, 10:00 Uhr, im Kasten neben Raum 34/401.4