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1.1 Executable specifications 

AsmL is a software specification language based on abstract state machines. It 

is used for creating human -readable, machine-executable models of a system’s 
operation in a way that is minimal and complete with respect to any given user-
defined level of abstraction.  We call specifications written in AsmL executable 
specifications.  

Like traditional specifications, executable specifications are descriptions of how 
software components work. Unlike traditional specifications, executable 
specifications have a single, unambiguous meaning. This meaning comes in 
the form of an abstract state machine (ASM), a mathematical model of the 

system’s evolving, runtime state. 

AsmL specifications may be run as a program, for instance, to simulate how a 
particular system will behave or to check the behavior of an implementation 

against its specification. However, unlike traditional programs, executable 
specifications are intended to be minimal.  In other words, although they are 
faithful in describing, without omission, everything that is part of the chosen 

level of detail, they are equally faithful in leaving unspecified what is outside 
that level of detail.  

Thus, unlike programs, executable specifications restrict themselves to the 

constraints and behavior that all correct implementations of the system will 
have in common.  In other words, an executable specification must be as clear 
about the freedom given to correct implementations of the system it describes 
as it is about constraints.  

For example, executable specifications do not constrain the order of operations 
unless it is significant, whereas current-day programs realize a sequential order 
of operation as an implementation decision.   

This can be seen with an example:  

Example 1  In -place sorting 

var A = [3, 10, 5, 7, 1] 
indices = {0, 1, 2, 3, 4} 
 
Main() 
  step until fixpoint  
    choose i in indices, j in indices  
           where i < j and A(i) > A(j)  
      A(i) := A(j) 
      A(j) := A(i) 
  step 
    WriteLine(A)        // prints [1, 3, 5, 7, 10] 
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This executable specification uses an abstract state machine for in-place 
sorting via a single -swap algorithm.  

The machine performs sequential steps that swap the values of A whose 
elements are denoted by indices i and j such that i is less than j and the 
values A(i) and A(j) are out of order. It runs until no further updates are 
possible, that is, until the sequence is in order. As a final step, it prints the 
sorted sequence. The state of the machine at each step is entirely 

characterized by the value of the sequence A in that step .  

The specification is minimal. The first point is that choose expression does not 
say how the two indices are selected, only that whatever indices are chosen 

must be distinct indices of out-of-order elements. Hence, many sorting 
algorithms, including quicksort and bubble sort, would be consistent with what 
we have specified.  

Also, our example does not say how the swap operation happens. The values 
of the variables change as an atomic transaction. This leaves each 
implementation to decide how to perform the sequential swap, for instance, with 

an intervening copy to a temporary location.  

1.2 Other Approaches 

There are several other mathematical approaches besides abstract state 
machines that provide an operational model of software systems. An 
operational model is one that describes a system in terms of a mathematical 

machine. The most famous of these is the Turing machine , which can precisely 
represent any computable function as the evolving state of a machine that 
reads and writes binary digits to a serial memory. The difficulty, of course, is 
that the Turing machine’s representation does not correspond to any 

commonsense view of the system that might aid human understanding. 

ASMs, on the other hand, employ the user’s view of the system as the 
vocabulary of the abstract machine that models the computation. As a 

consequence, with AsmL, one can describe the system’s state in terms of 
variables and operations that make sense to the user. Thus, we say that an 
executable specification is a faithful model that step-for-step simulates a 
system at a given level of detail.  

There are also a number of approaches that give an algebraic model of 
software systems, in contrast to an operational model. Algebraic models use 
algebraic equations that represent static constraints and definitions (that is, the 
rules relating the input and the output of a system). 

AsmL embraces the formalism of algebraic specification but extends it (and this 
is crucial) with the dynamic properties of ASMs. Thus, AsmL can be used to 
build algebraic models of a system but is not limited to static definitions and 

correctness constraints. Instead, the symbolic vocabulary that characterizes an 
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abstract state machine may include dynamic state variables whose values 
evolve during the run.  

AsmL’s focus is entirely on faithfully describing discrete systems in terms of 
evolving state. Thus, AsmL does not have an associated methodology for 
theorem proving or model checking, although executable specifications are well 
suited as input for many types of static analysis such as these. (An executable 
specification written in AsmL will typically have a static analysis search space 

that is several orders of magnitude smaller than an equivalent implementation 
written in a standard programming language.) 

1.3 Applications 

Executable specifications written in AsmL have some remarkable properties.  

First, AsmL models can be run as simulations of the system they describe. This 
means the development team can, even before any code has been written, 
explore the proposed design and anticipate how different features will interact. 
However an AsmL model is more than a prototype or reference implementation , 

since it is a complete representation of a chosen level of design detail.  In other 
words, a properly constructed AsmL model will say what each correct 
implementation must do, what it may do and what it must not do.  

Second, AsmL models can be run in parallel with the implementation of the 
systems they describe to check that the specifications and the implementations 
agree. Not only does this verify the implementation, but it also ensures that the 

specification is up-to-date.  

Finally, AsmL provides the rigor needed for algorithmic test case generation 
and, in many cases, for model checking and verification.  

1.4 Features 

AsmL is intended to be the standard ASM-based specification language for the 

growing worldwide ASM community, including software professionals working 
on large,  real-world projects.  

AsmL includes a state-of-the-art type system with extensive support for type 

parameterization and type inference. Using clear semantics, it provides a 
unified view of classes used for object-oriented programming, in addition to 
structured data types . It supports mathematical set operations—such as 

comprehension and quantification—that are useful for writing high- level 
specifications.  

Along with taking advantage of the most sophisticated advances in language 

design, it was important that the language be practical, accessible, and easily 
integrated with the tools currently used by the development community. To this 
end, AsmL implementations can target real-world system environments, such 
as Microsoft’s COM and .NET platforms. Its syntax was designed to read as 
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much like pseudo-code as possible, making it understandable to members of 
the development team other than programmers. Developers, analysts, testers, 
managers, and documentation writers should be able to read an executable 
specification with only a modest amount of training.  

As a specification language, we wanted AsmL to incorporate features that 
would make modeling actual systems as straightforward as possible. The 
language includes fundamental support for nondeterministic behavior.  

AsmL is also capable of describing the evolving state of asynchronous, 
concurrent systems. It has been successfully applied to both protocols and 
component design.  

1.5 Design goals 

 AsmL is designed to achieve the following goals:  

• AsmL should be a practical specification language that scales to the needs 

of the largest commercial software projects, including operating systems 
and distributed software components.  

• AsmL should be faithful to the spirit and clear semantics of abstract state 

machines. 

• Executable specifications written in AsmL should look like pseudocode and 
be readable by anyone familiar with at least one other computer language. 

• AsmL should be small, self -consistent and easy to explain. 

• AsmL should not require an overly complex implementation.  

The design was an engineering challenge. Focusing on these goals may have 
ruled out some language features that were more powerful, elegant, flexible 
and comfortable to mathematicians, language specialists and the existing ASM 

community in favor of syntax and features that met the needs of users from the 
world of commercial software development. (For example, array indices begin 
with zero in AsmL following the conventions of commercial programming 
languages, rather than with one as is the standard mathematical practice.) 

We leave it to the reader to decide how successfully these design goals have 
been met. 

1.6 Audience 

We intend this reference manual to be useful to experienced software 

professionals and to language implementers. (Notes to language implementers 
are called out separately from the body text.) We have attempted to keep the 
descriptions precise while providing a generous number of examples. 

Nonetheless, this manual is not a tutorial of abstract state machines nor is it a 
guide for applying executable specifications to software projects. Neither is it a 



 

 Fehler! Formatvorlage nicht definiert.  5 

primer on modern programming language design. For these purposes the 
reader should look elsewhere, including the AsmL Tutorial. We also caution the 
reader against overlooking the importance of training and a certain amount of 
apprenticeship when first attempting to use AsmL on a commercial project. 

1.7 Notation 

1.7.1 Conventions for terminology 

We use a special text color for terminology that is defined in the document. 
Additionally,  terms are italicized they are defined. For example, we define 
terminology as a phrase with special meaning. Terminology may appear 
anywhere in the document. 

Terminology  is given special text color only once per paragraph. Subsequent 
occurrences of identical terminology within a paragraph are not given special 
formatting. 

In the index found at the end of this document, the page number of each 
definition of new terminology  is given in bold font.  

1.7.2 Syntax 

We use a Backus-Naur formalism to give the syntax of AsmL.  

Terminal symbols are given in any of four forms:  1) in fixed-width bold, 2) by 
strings (for example, “=”), 3) by characters in single quotes or 4) as Unicode 
characters in hexadecimal form (for example,  \u00A0).  

Non-terminals are set in roman italics and are defined using the symbol “::=“. 

Alternatives are separated by a vertical bar, ‘|’.  Ranges of characters are 

given by two adjacent periods, for example, 'a'..'z' indicates any of the 
twenty-six lowercase Latin characters. 

Parentheses “(” … “)” are used for grouping.  

Curly braces in the form “{” … “}” are used to indicate zero or more repetitions.  

Square braces in the form “[” … “]” indicate that the enclosed expression is 
optional. 

Underlining indicates one or more occurrences of a production using identical 
indentation on a new line as separation.  This convention is explained more fully 
in section 3.1 below. 

1.7.3 Language version  

This manual documents AsmL2.  
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1.8 Comments 

AsmL is available for download at 

http://research.microsoft.com/foundations/asml. 

Comments about the AsmL language or implementation should be sent to 
asml@microsoft.com.  

Comments related to this manual can also be sent to the editor of the reference 
manual, using either v -colinc@microsoft.com or colinc@modeled-
computation.com.  
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This section describes the lexical structure of AsmL text. 

2.1 AsmL source 

AsmL source is a sequence of characters  (its text) encoded using the Unicode 
character set.  

2.2 Handling of control characters 

Except for the form feed, line feed and carriage return characters, AsmL rejects 
all control characters  in the range \u0000 through \u001F that may appear in 
the text of a program by issuing an error message. In particular, AsmL source 
may not contain the horizontal tab character (\u0009).  

Carriage-return characters  (\u000D) and form-feed characters (\u000C) are 
interpreted as new -line characters  (\u000A) . However, any  carriage-return 
character that immediately precedes a new-line character is ignored (this 

affects only the line numbering of diagnostic error messages). 

After adjusting for control characters , AsmL interprets the text of a program as 
a sequence of source lines.  Each source line is a sequence of characters that 

ends with a new-line character . AsmL will implicitly terminate the text of a 
source with a new-line character if one is not already present.  

2.3 Tokens 

The text of an AsmL program is scanned as a sequence of tokens, possibly 
separated by white space and comments. Tokens are the terminal symbols  of 

the AsmL grammar. 

A token is a case-sensitive sequence of characters. There are three kinds of 
tokens: identifiers, literals and keywords.  (These are described in the sections 

that follow.) Identifiers, literals and keywords have their own grammatical 
context  and are not interchangeable. For example, a keyword may not be used 
in a context that expects a literal or identifier.   

White space is required to separate tokens that begin or end with letter or digit  
characters; otherwise, white space is optional. For example , graphemes (that 
is, tokens like ">=" that do not contain letters) do not  require white space 
separation. 

White space  is a sequence of one or more white space characters . A white 
space character is either the space  (\u0020) or the new-line character  (LF, or 
\u000A) . 

AsmL’s lexical analysis uses the "longest prefix" rule. At each point, the longest 
possible character string satisfying the token production is read. So, although 
“class” is a keyword, “classes” is not.  Similarly, the string ">=" would be 

2 Lexical Structure 
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interpreted as the token for greater-than-or-equals instead of two tokens ">" 
and "=." 

2.4 Comments 

Comments are sequences of characters that are ignored by the parser when 

scanning AsmL text into a sequence of tokens. There are two forms used for 
comments. 

A line comment begins with two forward slash characters ("//") and continues to 

the end of the source line.  

A nested comment begins with the character sequence "/*" and ends with the 
character sequence "*/".  Nested comments may span multiple source lines. 

The character sequences "/*" and "//" have no special significance within 
comments. The sequence "*/" has no significance within a line comment. 

2.5 Identifiers 

id ::= initIdChar { idChar } { '’' }  
initIdChar ::= letter | ideographic | '@' | '_'  
idChar ::= letter | combining | ideographic   
   | digit | extender | underscore 
letter ::= // per Unicode section 4.5, letter,  
    excluding  combining characters 
combining ::= \u20DD | \u20DE | \u20DF | \u20E0 
digit ::= // per Unicode section 4.6, digit char 
ideographic ::= \u2FF0..\u2FFF  
extender ::= \u00B7 | \u02D0 | \u02D1 | \u0387 | \u0640  

   | \u0E46 | \u0EC6 | \u3005 | \u3031..\u3035  
   | \u309B..\u309D | \u309E | \u30FC..\u30FE  
   | \uFF70 | \uFF9E | \uFF9F  
underscore ::= \u005F | \uFF3F 

Identifier tokens are user-defined symbolic names.  

The form used for AsmL identifiers is consistent with the conventions used for 
Microsoft Common Language Specification [CLS] with two exceptions. The first 
is that, unlike the CLS, AsmL permits the underscore character ('_', or \u005F) 
and the "Commercial At" character ('@', or \u0040) to be used as initial 

characters of an identifier. The second is that it is permissible for an AsmL 
identifier to be suffixed by one or more apostrophe characters ( \u0027). 

The letter production is also equivalent to the Microsoft .NET Frameworks 

library function System.Char.IsLetter(), if the characters \u20DD, \u20DE, 
\u20DF and \u20E0 are excluded.  
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The digit production is  also equivalent to the Microsoft .NET Framework library 
function System.Char.IsDigit() . 

Note to users  

We recommend that users adopt as a coding convention that identifiers within 

the scope of an enclosing statement block, such as the names of local 
variables, be placed in "camel" case. Camel case means that lowercase letters 
are used, except that secondary words in a compound name are capitalized. 

Examples are "begin" and "beginScope." Camel case should also be used as 
the names of fields defined within datatypes. The identifiers of global fields, 
types and methods should be capitalized. 

2.6 Literals 

literal ::= null | boolean  |  integer | real | string | char  

Literals  are tokens that denote values of certain built -in types. See section 4 

below for more information about values and section 5.3 for more information 
about AsmL's built- in types.  

2.6.1 Null 

The literal null denotes a value that is distinct from all other values. The value 
null typically designates a default  value.  

The value null is of type Null. 

2.6.2 Boolean literals 

boolean ::=  true | false 

The Boolean literals true and false are the values of the Boolean type.  

2.6.3 Integer literals  

integer ::= (decimal | hexadecimal) [ integerSuffix  ] 
decimal ::= digits 
hexadecimal ::= '0' ('x' | 'X') hexDigit { hexDigit } 
integerSuffix ::= 'l' | 'L' | 's' | 'S' | 'b' | 'B' 
digits ::= digit { digit } 
hexDigit ::= digit | 'a' .. 'f' | 'A' .. 'F' 

Integer literals  may be given in either decimal notation or hexadecimal notation.  

Decimal notation  is a sequence of one or more digits.  
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Hexadecimal notation  is a sequence of one or more hexadecimal digits  prefixed 
by the characters '0x' or '0X'. A hexadecimal digit is a (decimal) digit or one 
of the characters 'a' through 'f' or 'A' through 'F' (corresponding to numbers 
whose decimal representations are 10 through 15 respectively).  

The distinction between decimal and hexadecimal is only a matter of notation. 
In other words, the literals 31 and 0x1F are two ways to denote the same value. 

The type of an integer literal is Integer , unless the optional suffix b, s or l (or, 
in capital letters, B, S, L) is specified, in which case the literal is of type Byte, 
Short or Long, respectively.   

Integer literals with differing suffixes denote distinct values. In other words, the 
domains of the various built -in types of integers are disjoint. 

2.6.4 Literals for real numbers  

real ::= digits '.' digits [ exponent ] [ realSuffix  ] 
exponent ::= ('e' | 'E') [ '+' | '-' ] digits 
realSuffix ::= 'f' | 'F' 

A literal for a real number includes one or more digits to the left and to the right 
of a decimal point, followed an optional exponent. If provided, the exponent 
consists of the letter 'E' or 'e', an optional sign ('+' or '-') a nd a sequence 
of digits. The exponent indicates a power of ten by which the numeric value 

should be multiplied.  

The type given by a real-number literal is Double , unless the literal has the 
suffix F or f, in which case the value is of type Float. 

Numeric literals, whether real numbers or integers, that fall outside the domain 
of their type generate an error.  

Literals suffixed by f are distinct from those not so suffixed. In other words, the 
domains of the types Double and Float are disjoint. 

2.6.5 String literals 

string ::= quote { strChar } quote 
strChar ::= readable  | whiteChar | sQuote | '\' esc 
readable ::= (see text below) 
quote ::= '"' 
esc ::= 'b' | 'f' | 'n' | 't' | 'r' 
  | ('u' hexDigit  hexDigit hexDigit hexDigit) 

A string litera l contains between its delimiting double quotes zero or more 
readable characters, single quote characters (\u0027), white space characters  

and escaped characters . 
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In AsmL readable characters include all letter characters, digits , the space 
character ( \u0020) as well as all of the characters used in AsmL for keywords. 
The character '\' (\u005C) is not a readable character. White space 
characters other than the space character are not readable characters. The 

single quote and double quote characters are not readable characters.  

An escaped character consists of a backslash character “\” (\u005c) followed 
by an escape code.  

Escape codes  may denote the control characters "backspace" (\b), "form feed" 
(\f), "new line" (\n) and "horizontal tab" (\t).  

Escape codes  may also be in numeric form to denote a character by its 
Unicode encoding. The hexadecimal escape code begins with a “u” and is 
followed by four hexadecimal digits, for example “\u0022”.  

The sequences of characters “ /*”, “*/” and “ //” have no special significance 
within a string literal.  

The value denoted by a string literal is of type String. 

2.6.6 Character  literals 

char ::= sQuote (readable  | quote | '\' esc) sQuote  
sQuote ::= "'" 

Character literals denote values of the built -in type Char. Between its delimiting 
single quotes, a character literal contains a readable character, a double quote 
character ( \u0022) or an escaped character . 

2.7 Keywords 

AsmL recognizes the following tokens as keywords.  

-> { error interface out sum  

.. | event internal  override the 

:= } exists intersect primitive then 

<= abstract explore is private throw 

<> add extends let procedure to 

>= and fixpoint lt process try 

( any for lte property type 

)   as forall match protected union 

* case foreach max public unique 

+ catch from me ref until 

, choose function merge remove value 
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- class get min require var 

. const gt mod resulting virtual 

/ constraint gte  mybase return where 

: delegate holds namespace sealed  while 

< do if ne search  

= else ifnone new set  

> elseif implements not shared  

? ensure implies notin skip  

[ enum import of step  

] enumerated in operator structure   

+= *= initially or subset   

_ eq inout otherwise subseteq   

 

Alternatives eq, ne, lt, gt, le and ge may be substituted for "=", "<>", "<", 
"<=",">" and ">=", respectively. (This makes it easier for AsmL source code to 
be integrated into XML documents  in some situations .) 

The keywords the, min, max and sum used to introduce a select expression 
(see section 7.9 below) may also be used as identifier tokens. 
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An AsmL program consists of declarations  that establish the program's 
vocabulary , a fixed set of symbols  with defined operational meaning.  This 
section describes how to interpret the token sequence described in the 
previous section as an AsmL program. 

Each declaration  establis hes the meaning of an identifier  (called a declared 
name ) within its scope. The definition of a declared name is static. In other 
words, the meaning of a program's vocabulary  does not change during the run 

of the program.  

Note to users  

Declarations in AsmL have rigorous mathematical semantics . This means that 

there is only one interpretation of a program written in AsmL and that this 
interpretation can be directly and completely expressed in mathematical terms .  

For example, declaring a name as a Set in AsmL means that the name denotes 

an abstract entity with the same properties as a finite set in mathematical set 
theory.  Even "state-changing" operations such as updating the value of a 
variable can be precisely understood in terms of operations on an abstract 
mathematical machine.   

It is not necessary to understand AsmL's mathematical foundation in order to 
use or implement the language. In fact one of AsmL's primary design 
motivations is to make clear mathematical semantics practical in the world of 

commercial software development without requiring software professionals to 
become mathematicians . 

As a consequence, t his document does not give the full semantics of AsmL, 

although we do add "notes to users" throughout the text to clarify semantic 
issues that could be confusing.  

Declarations may be nested, and the order of declarations in a program does 
not matter.  

Note that AsmL also provides namespaces to govern the visibility of declared 

names.  Namespaces are not required, and so we will defer them until section 8 
below.  

3.1 Block structure 

AsmL declarations sometimes use layout (that is, indentation and new lines) to 
indicate block structure. In other words, AsmL interprets a new line and 

indentation as delimiting  certain lists of entities.  

In the grammar that follows, an underlined term represents a list of that term, 
and the parser will recognize indented layout as a delimiting token between 

items in the list. For instance, “stm ” would be an indented list of “stm ” terms.  

3 Declarations 
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The first item in the list must be indented (possibly on a new line) with respect 
to the first token of the production in which the list occurs. For this purpose, the 
definition of a named term is the containing production. 

All items that follow the first must start on a new line with the same offset as the 
first list item (called block offset of the list). A character’s offset is the number of 
characters in the line that precede it within its source line. Comments are 
significant when calculating a character's offset on a source line. 

Lines consisting entirely of white space and comments are ignored for the 
purposes of indented layout.  

The end of the list is not delimited. The list  terminates when the enclosing 
production continues. 

Compatibility Note 

Previous version of AsmL allowed semicolons as an alternative way to separate 

items in a list. The use of semicolons as separators has been removed from 
AsmL. 

Example 2  Indentation as block structure 

/* 
 *  enum    ::= "enum" id [ "extends" typeExp ] [ element ] 
 *  element ::= id ["=" exp] 
 */ 
 
enum Color1 
  Red 
  Green 
  Blue     
 
enum Color2 { Orange Yellow Violet } 
 

Note the first token of the production is "enum", so every element has to be 
indented with respect to the column where "enum" appears.  Each element must 
be identically indented.  Indentation is not required for the second enum 
because curly braces have been used to indicate the extent of the list.  

Example 3  Indentation as block structure 

/* 
 * ifExpr    ::= if exp [then] stm 
 *               { elseif exp [then] stm } 
 *               [ else stm ] 
 */ 
  
Main() 
  var x as Integer = 1 
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  var y as Integer = 2 
  let flag = if x < y then x else y 
  let flag2 = if x > y then 
                x 
              else 
                y 
  step 
    if x > y then x := x + 1 
                  y := x + 2 
         else 
      x := 33 
  step 
    WriteLine(x) 
 

Example 3 shows how indentation can be used for blocks of expressions. Note 

that the indentation of the last list is relative to if (and not else), since if 
begins the production in which the stm was given in the syntax.  

For namespaces the offside rule also treats each entity as a list entity. For 

namespaces the first token of a compilation unit determines the block offset.  

3.2 Kinds of declarations 

declaration ::=  import | type | member  

Declarations are import declarations, type declarations or member  declarations. 

Type declarations (see section 5.3) provide the named structures familiar to 
object-oriented programmers, such as interfaces and classes . Type 

declarations define new named types  or if type parameters are given new type 
families .  

Member declarations  (see section 6 below) provide fields  and methods. 

Member declarations  may be nested inside of a type declaration or appear 
globally , outside of any type declaration.  

Example 4  Declarations 

const max_Integer = 10   // global member decl  
 
class Cell                // type declaration 
  var cont as Integer    // member decl nested inside type decl 
 
Main()                    // global member decl  
  WriteLine(max_Integer)     

 

 

 Fehler! Formatvorlage nicht definiert.  16 

3.3 The Main() method 

The operational meaning of a program is given by its Main()  method. In other 

words, Main() is the top-level entry point, like main() in the "C" programming 
language. 

3.4 Names 

name ::= { id "." } id 

Names used in the program consist of one or more identifiers (see 2.5 above) 
separated by a dot ("."). They may be either simple or qualified. 

Simple names do not contain a dot (" ."). Qualified names are those that include 

a dot (".").   

For example, Pressure_2 and Control.Common.Pressure_2 are well-formed 
names. The form .Pressure_2  is not a name, since the dot (".") must be 

preceded by an identifier.  

Note that qualified names are defined in AsmL at the token level, not the lexical 
level. This means that white space and comments may appear in between the 

tokens that constitute a qualified name.  

We use the terms name and identifier interchangeably throughout the rest of 
this reference. The grammar makes it clear when a qualified name may be 

used instead of a simple name. 

3.5 Declaration Scope 

The scope of a declared name is the region of the program  text within which the 
declared name has meaning. 

Unless otherwise noted, the scope of a declared name N is the enclosing 
scope, that is, the region given by the declaration that contains N’s declaration 
in nested form. If N’s declaration is not nested within another declaration, it has 
global scope  (that is, it is  defined within the namespace Main as we will see 

later in section 9.2). A name with global scope is called a global name . 

3.5.1 Unique declarations required per scope  

All declared names  must be distinct within their scope. For example, an error 
occurs if a type declaration and a field declaration introduce the same name in 
the same scope. It is also not allowed to give a field the same name as a 

method. 

There are exceptions to this rule: ov erloaded method names and continued 
declarations.   
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Overloaded methods are distinguished by their argument types as well as their 
names. It is therefore possible that two distinct methods will have the same 
name. See section 6.2.6 below.  

Continued declarations allow a single declaration to be split into sections. For 
example, a class declaration may introduce methods in lexically separate 
blocks. See section 3.6 below. 

Implementation Note 

The AsmL currently does not check prevent a field and a method from having 
identical names. This will be corrected in a subsequent release.  

3.5.2 Shadowing of identifiers  

Names introduced either by declarations  nested within a type declaration 
(assuming the shared  keyword is absent) or by statements  (see section 7.2 
below) are called locally declared names.  

Locally declared names hide global names. For example, names introduced 
inside of methods for local variables  may be the same as global variables . In 
this case, any references to the name are interpreted using the local definition. 

Note that the shadowed names are still available by means of qualified names. 
See section 9.3 below for the use of qualified names.  

Local names are not allowed to shadow other local names, regardless of 

nesting level of their respective scopes. 

Shadowing the names of types is not allowed. 

3.5.3 Order unimportant within a scope 

The order of declarations in a scope is of no significance.  However, there are 

two exceptions.  

First, t he order that field declarations occur in class or structure declaration 
determines the order of the p arameters of the default construction expression 

for that datatype. 

Second, the order of elements in an enumeration determines the default 
numeric values associated with those elements. See section 5.5.5 below. 

3.5.4 Closure of scope 

Every scope in a program must be closed. In other words, every simple name 

referenced within a scope must be a declared name visible in that scope.   
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3.6 Continuation of declarations 

AsmL allows a type declaration, namespace or method to be divided into 

distinct lexical blocks. 

In general, a declaration is sim ply the union of separate lexical blocks. In all 
cases, the interpretation is "union of constraint." That is, the information 

provided by all declarations of a given name within the same scope must not 
contradict. 

Implementation note 

When a method declaration is continued, only one occurrence of the method 
may have a body. This is a restriction may be relaxed in future versions of 

AsmL. 

Example 5  Continuation of declarations 

class Cell 
  const id as String 
 
  SetValue(i as Integer) 

 
GetValue() as Integer 

 
Main() 

step   
  let c = new Cell( "ID1", 42) 
step   
  WriteLine(c.GetValue()) 

 
class Cell                   // continuation of class 

var storage as Integer 
 
SetValue(i as Integer)     // continuation of method 
  Storage := i 
 
GetValue() as Integer      // continuation of method 
  return storage 
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4.1 Values 

Values  are the immutable, abstract entities that exist during the run of a 

program.  

Evaluating an expression (i.e., a formula) at runtime produces a value. For 
example, if we evaluate the expression 1 + 3 we get the value 4. 

Values comprise the domain of each type. (See section 5 below for information 
about types.)  

The fundamental operations that apply to all values are equality  (the "=" 
operator) and set membership (the "in" operator). We may always query 
whether two expressions represent the same value and whether a given value 
is an element of a given set . 

Note to users  

Values are "elements" in the mathematical sense. That is, they are the abstract 
entities used as members  of mathematical sets.  

The notion of a value's "identity" is fundamental. Thus, values are immutable, 
primitive entities that do not change as the system runs.  

Of course, a variable (a named location that contains a value) may be 

associated with various values as the system's state evolves during the run of 
the program.  When we speak of changing "the value of a variable" it is only the 
association of variable to value that changes.  

4.2 Constructors 

constructor ::= literal 
   |  datatypeConstructor 
  |  collectionConstructor 

Constructors  denote values .   

A constructor can be in one of several forms, called construction expressions . 
There are three kinds of construction expressions: literals , datatype 

constructors  and collection constructors.  

It is possible for a single value to have more than one form of construction 
expression.  For example, the literals 0x10 and 16 denote the same value. (The 

first is just a hexadecimal representation.) 

It is also possible that a construction expression will produce distinct values 
when invoked in different contexts. For example, each invocation of the 

operator new (to create instances of a class) will result in a distinct, new value.   

4 Values, Constructors 
and Patterns 
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4.3 Literal constructors 

A literal constructor denotes a value of a built -in type such as Boolean, String 

and Integer. The syntax for each kind of literal is given above in section 2.6. 

Example 6  Literal constructors 

“This is a string”       // string literal 
2.0                      // literal for real number 
0x02                     // Integer literal in hexadecimal 

4.4 Datatype constructors 

datatypeConstructor ::= [ new ] typeName [ "(" [ exps ] ")" ] 

Datatype construc tors denote values of class, structure and enum types. The 
syntax for type names is given in section 5.1 below. The syntax for expressions 
("exps") is in section 7 below.  

4.4.1 Instance constructors  

The form  new typeName (arg1, arg2,  …) is called an instance constructor. 

The type name given in an instance constructor must be that of a class. The 
arguments provide values for the instance-level fields. 

Each invocation of an instance constructor always denotes a new, distinct 

value, called an instance of the class. Note that two instance constructors  in the 
same form with identical arguments denote two different  values.  

The parentheses after the type name may optionally be omitted if the class 

does not include fields that need to be initialized. The keyword new is required 
when instantiating values of class types.  

If the type name given in a datatype constructor is that of an instantiated type 

(see section 5.1.5 below), then the name of the corresponding type family  may 
be sometimes be substituted for the type name. This may happen when the 
arguments given to the constructor fully constrain the type instantiation. See 
section 5.1.5 below for an example. 

Example 7  Constructing instances 

class Person 
  name as String 
 
Main() 
  if new Person("Bob") <> new Person("Bob") then 
    WriteLine("Instance constructors always yield values " + 
              "that are distinct from all other values.") 
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4.4.2 Compound value constructors  

The form typeName (arg1, arg2,  …)  denotes a compound value , that is, a 

value of a structure type. The type name given in a compound value 
constructor must be that of a structure. Note that the keyword new must not be 
used when constructing values of a structure type.  

Note that two compound value constructors  in the same form with identical 
arguments denote the same  value (assuming free construction , the absence of 
nondeterminism in the constructor's initialization).  

The parentheses after the type name may optionally be omitted if the structure 
does not include fields that need to be initialized. 

Example 8  Constructing compound values 

structure Point  
  x as Integer 
  y as Integer 
 
Main() 
  if Point(1, 2) = Point(1, 2) then 
    WriteLine("Compound value constructors denote " + 
              "the same values if their arguments " +  
              "are identical.") 

4.4.3 Enum constructors  

The datatype constructor provides the syntax for enum values. This is just 

elementName. 

Example 9  Constructing enumerated values 

enum Color  
  Red 
  Green 
 
Main() 
  let x = Green            // Green is a constructor 
  match x 
    Green: WriteLine("x is Green")        
      

4.5 Collection constructors 

collectionConstructor ::= tupleExp | setExp | seqExp | mapExp 
tupleExp ::= "("  exp "," exps  ")" 
setExp ::= "{" [ comprehension | exps | range ] "}" 
seqExp ::= "[" [ comprehension | exps | range ] "]" 
mapExp ::= "{" ( mapComprehension | mapExps | "->") "}" 
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range ::= exp ".." exp 
comprehension ::= exp "|" binders  
mapComprehension ::= maplet "|" binders  
mapExps ::= maplet { "," maplet } 
maplet ::= exp "->" exp 

Collection constructors yield values  of AsmL's built -in types for sequences, 
sets, maps and tuples. 

4.5.1 Tuple construction  

A construction expression in the form (arg1, arg2, …) denotes a tuple, or an 
element of a product type (see section 4).  

Note that the form (arg)  denotes the value given by arg. The form () is not 
the constructor of any value. An error will occur if () appears in a context that 
requires a value.  

Example 10 Constructing tuples 

(1, 2, "abc")       // value of type (Integer, Integer, String) 
 

4.5.2 Set construction  

Construction expressions for the built- in type family Set have three forms: set 
range, set comprehension  and set display . 

A set range is in the form {arg1..arg2} , where arg1 and arg2  are 
expressions. The set range denotes the set of all values greater than or equal 
to arg1 and less than or equal to arg2. Both arguments must be of the same 

type. The argument types for a set range may be Integer, Long, Short, Byte 
and Char. 

Set comprehension denotes sets in terms of iteration expressions. Its form is 

{exp  | binder1, binder2, …}. The values given by evaluating exp in each 
binding context constitute the value of the set denoted by the comprehension 
expression. Binders are described below in 4.7. 

Set display is an enumeration of values in the f orm {arg1, arg2, …}, 
denoting the set that contains each of the given values. Duplicate values are 
ignored. The order that values are given in a set display does not matter. 

Example 11 Constructing sets 

x = {2..5}                      // same as {3, 2, 5, 4} 
y = {i | i in x where i < 4}    // same as {2, 3} 
z = {3, 2}                      // same as y 
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4.5.3 Sequence construction  

Construction expressions for the built- in type Seq have three forms: sequence 

range, sequence comprehension and sequence display. 

A sequence range  is in the form [arg1..arg2], where arg1 and arg2 are 
expressions. The set range denotes the ordered sequence of all values greater 

than or equal to arg1 and less than or equal to arg2. Both arguments must be 
of the same type. The argument types for a set range may be Integer, Long, 
Short, Byte and Char . 

Sequence comprehension denotes sequence in terms of iteration expressions. 
Its form is [exp | binder1, binder2 , …]. The values given by evaluating 
exp for each binding in left -to-right order produce the sequence of values 
denoted by the comprehension. Binders are described below in 4.7 

Sequence display is an enumeration of values in the form [arg1, arg2, …], 
denoting the sequence whose ith element equals the ith argument in the 
constructor. The order of elements is significant, and duplicate values are 
respected. 

Example 12 Constructing sequences 

x = [2..5]                      // same as [2, 3, 4, 5] 
y = [i | i in x where i < 4]    // same as [2, 3] 
z = [2, 3]                      // same as y 
w = [2, 2, 3]                   // not the same as z  
 

4.5.4 Map construction  

Map display is an enumeration of individual element-to-element associations in 
the form {key1 ->  val1, key2 -> val2, …}. A map display denotes a map 
value M such that M(key i) yields vali for each key i and vali given. If any two 

values key i and key j are the same, then vali and valj must denote identical 
values, or an error occurs.  

Map comprehension denotes a map in terms of iterated expressions. Its form is 

{expr1  -> expr2 | binder1 , binder2 , …}. This form denotes a Map value 
constructed by evaluating expr1 and expr2 for each iterated binding and 
collecting the key/value pairs into a table. Binders are described below in 4.7.  

The form {->} denotes the empty map.  

Example 13 Constructing maps 

x = {2..5}                 
y = {i -> i + 1 | i in x where i < 4}   
z = {2 -> 3, 3 -> 4}   // same as y 
WriteLine(z(2))                  // prints 3         
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4.6 Patterns  

pat ::= "_"                        

   |  literal  
   |  id [ as typeExp ]  
   |  tuplePat  
   |  datatypePat  
   |  mapletPat 

tuplePat ::= "(" pats ")"  
datatypePat ::= typeName [ "(" [ pats ] ")" ] 
mapletPat ::= pat "->" pat 
 pats ::= pat { "," pat } 

Patterns are destructuring forms. With patterns, the user can decompose a 
value into its constituent parts using syntax that mirrors the value's constructor 
(see section 4.3). 

Patterns are used for matching, the process of testing whether the constructor 
of a given value has the same form as a given pattern. Matching occurs when 
the pattern form is consistent with the constructor of the value being matched.   

Pattern syntax is also used for binding, the process of associating an identifier 
with a value.  (The "let" statement is an example of binding.) Note that matching 
must also occur if any binding is  to take place. 

Patterns occur in four contexts in AsmL:  

• As cases in a match statement (see section 7.6.2 below). 

• In a let statement to indicate the names that will be bound to values (see 
section 7.2 below). 

• In binder clause to give the names that will take on multiple, iterated values 

(see 4.7 below).  

• Within another pattern, to form a nested pattern.  

Example 14 Symmetry of construction and pattern matching 

structure Point  
  x as Int eger 
  y as Integer 
 
Main() 
  let p = Point(3, 2)            // constructor 
  let Point(a, b) = p            // pattern 
  WriteLine(a)                   // prints 3 
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Note in the example how the constructor  Point(3, 2) has the same form as 
the pattern Point(a, b).  The constructor yields a value, while the pattern is 
matched against an existing value to bind a = 3 and b = 2.  

4.6.1 Universal patterns 

The universal pattern  is an underscore token (“_”). The universal pattern can be 
matched against any value but does not result in a new binding of a name to a 
value.  

Note that the underscore token has special meaning and may be used in AsmL 
only for the universal pattern.  

4.6.2 Literal patterns 

A literal pattern has the same form a literal (such as a string literal or a numeric 
literal).  A match occurs if the value being tested equals the literal given. No 

binding results. 

Example 15 Pattern matching without binding 

CheckRemainder(i as Integer, r as Integer) 
  match i mod r  
    0: WriteLine(“Divides evenly!”)     
    1: WriteLine(“Has one left over”) 
    _: WriteLine(“Has more than one left over”)  
 
Main() 
  CheckRemainder(3, 2)       // prints "Has one left over"    
 

In Example 15 the value of expression i mod r matches the pattern 1 (since in 

this example i mod r means 3 mod 2,  or the value 1.)  

4.6.3 Identifier patterns 

An identifier  pattern matches any value, and a binding is established between 
the name and the matched value. Its syntax is just that of an identifier.  

Example 16 Single-name patterns 

Main() 
  let x = (1, “first”) 
 
  choose y in {1, 2}  
    WriteLine({z | z in {0..y}})  // prints {0, 1} or {0, 1, 2} 
 

 

In Example 16  x, y and z are identifier patterns. 
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4.6.4 The type pattern  

A type pattern has the form id as type. It is similar to the identifier pattern, but 

the type pattern only succeeds if the value being matched is a subtype of type. 
If a match occurs, the value is bound to the name id with declared type type .  

Example 17 Type patterns 

structure Point  
  x as Integer 
  y as Integer 
 
structure ColorPoint extends Point  
  color as String  
 
PrintPointColor(p as Point) 
  match p  
    cp as ColorPoint:  
      WriteLine(cp.color) 
    _:  
      WriteLine("No color present") 
 
Main() 
  a = ColorPoint(1, 2, "red") 
  PrintPointColor(a)         // prints "red" 
 

 

The form cp as ColorPoint  in Example 17 is a type pattern. This example 

shows a type-safe way of "downcasting," or determining at runtime whether a 
value is in the domain  a type other than its declared type. 

4.6.5 Tuple pattern  

The form (pattern , pattern ...) is called the tuple pattern. The pattern 
matches if its form is the same as the construction expression of the given 

value and each of its patterns match pairwise with those of the value. It is 
possible that pattern matching is recursive. 

Example 18 Tuple pattern 

Main() 
  let a = (1, (2, "abc"))         
  let (b, (_, c)) = a        // b is 1, c is "abc" 
  WriteLine(c)               // prints "abc" 
 



 

 Fehler! Formatvorlage nicht definiert.  27 

4.6.6 Datatype pattern  

A datatype pattern has the form typeName (pattern1, pattern2, …). The 

pattern matches if the name and patterns match the default construction 
expression of the given value.  This is similar in form to the default construction 
expression of that datatype, either class, structure or enum. 

If the constructor  of a structure or class does not have any parameters, then the 
pattern corresponding to that constructor may omit the parentheses. The 
patterns for enums do not include parentheses.  

Note that, unlike the class constructor, the datatype pattern does not use the 
keyword new. (This is an exception to the rule stated above that patterns have 
the same syntax as constructors.)  

Example 19 Destructing patterns for structures 

structure List of T 
  case Nil 
  case Cons 
    head as T 
    tail as List of T 
 
Main() 
  let x = Cons  of Integer(2, Nil of Integer) 
  let Cons  of Integer(a, _) = x           // same as a = 2 
  let y = Cons(10, x) 
 
  match y  
    Cons of Integer(10, Cons of Integer(2, _)):  
       WriteLine("Matched y with nested pattern") 
 

Note to users  

Pattern matching should not be used for datatypes that inherit fields from a 
supertype. (The behavior in this case is undefined and may change in future 
versions of AsmL.)  

4.6.7 The maplet pattern  

A maplet pattern has the form pattern1 ->  pattern2.  The symbol "->" is read 
as "maps to".  

The context in which a maplet pattern may appear is more restricted than other 
kinds of patterns. A maplet pattern may only appear within a binder form (see 
4.7 below), before the keyword in. A maplet pattern may not be used within a 
match case statement, within a let binding or nested within another pattern. The 
only use of a maplet pattern is to produce bindings for key/value associations 

given in a map. 
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The maplet pattern in the form pat1 -> pat2 in exp produces bindings for 
every case where pat1 matches a key value of the map given by exp and pat2  
matches the lookup value associated with that key.  

Example 20 Maplet patterns 

const myMap = {"one" -> 1, "two" -> 2, "three" -> 3} 
 
IsOdd(x as Integer) as Boolean 
  return (1 = x mod 2)  
 
Main() 
  step 
    let oddNumbers = {i | i -> j in myMap where IsOdd(j)} 
    WriteLine(oddNumbers)           // prints {"one", "three"} 
  
  step 
    let two = the i | i -> 2 in myMap 
    WriteLine(two)                  // prints "two" 
 

In Example 20 the forms i -> j and i -> 2  are maplet patterns . OddNumbers 

is the set of all i such that the key/value pair i-mapsto-j is found in the table 
myMap and j is an odd number. Two is the (unique) i such that i-mapsto-2 is 
found in the table myMap. 

Note to users  

Maplet patterns are more restricted than other patterns. This arises from the 

fact that there is no value corresponding to key/value associations that 
constitute a map.  

4.7 Binders 

binders ::= binder { "," bin der } 
binder ::= pat ( in | "=" ) exp [ where exp ]  

AsmL uses a form called a binder  for associating names with values. Binders  
are used for  

• comprehension (see sections 4.5.2, 4.5.3 and  4.5.4 above), 

• quantification (see section 7.7 below),  

• nondeterministic choice expressions  (see 7.4 below),  

• parallel update,  and 

• sequential iteration. 

Binders  give the identifiers  to be bound by means of a pattern (see 4.6 above), 
the token “in” or “=”, and an expression that provides the values that will be 
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associated with the given identifiers. Each binder clause in a series is delimited 
by a comma (","). Each binder may optionally include a where clause that 
further restricts the bindings produced. 

Depending on context, binders support simple binding, iterated binding and 
nondeterministic choice . Simple binding and nondeterministic choice result in a 
single association of names to values; iterated binding produces multiple 
associations of names and values.   

Simple binding occurs when the equal sign (“=”) is used in a binder.  

Iterated binding occurs when the “in” keyword is used in a binder, except that 
within a choose-expression the “in” keyword is interpreted as nondeterministic 
choice.  

With iterated binding, a binder produces one name/value association for each 
possible match of the pattern to the left of "in" with each value in the set, 
sequence or map that appears to the right of "in".  

If there is more than one binder, the iteration occurs in a nested binding. This 
means that the bindings proceed in an outer-to-inner fashion, with the left-most 
binder acting as the outer-most loop. In a nested binding, it is possible to use 
identifiers introduced in a binder within expressions that occur in any other 
binders that appear to the right.  

There is special handling of an identifier  pattern within a binder that operates on 
the built -in map type. In this case, the value bound will be taken from the key 
values of the map. In other words, the form x in m, where m is a map will be 

interpreted as x in Indices(m). (The built -in library function Indices() 
returns the key values of a map as a set.) 

Nondeterministic choice  has the same form as iterated binding, but only one 

binding is created. That is, of the possible iterated bindings, one is selected in a 
nondeterministic manner. 

Binders  may include a where clause to constrain the binding. In this case, the 

bindings are filtered to only those where the expression given in the where 
clause has the value true. The expression may refer to names introduced in 
the pattern that precedes it.  

Example 21 Simple, iterated and nondeterministic bindings 

Main() 
  let a = 1 
  let b = 2 
  step foreach i in {a, b, 3}   // iterated binding 
    WriteLine(i) 
 
  step                          // nondeterministic choice 
    choose x in {a, b, 3}    
      WriteLine(x) 
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  step                          // nested binding 
    let suits = {"Hearts", "Spades", "Clubs", "Diamonds"} 
    let numbers = {"Ace", "2", "3", "4", "5", "6", "7", "8",  
                   "9", "10", "Jack", "Queen", "King"} 
    let deck = {(n, s) | n in numbers, s in suits} 
    WriteLine(Deck)       // prints 52 pairs in arbitrary order 
 

4.7.1 Parallel binding semantics 

Iterated bindings may occur with sequential or parallel semantics, depending on 
the context where they appear. This is a feature of AsmL that differs from other 

programming languages. For example, the expression forall i in {1, 2, 
3} holds i < 4 creates three bindings for the identifier i. However, these 
bindings are simultaneous, not sequential (that is, they occur in parallel). You 
cannot assume that the bindings occur in sequence, one after another. 

4.7.2 Order of bindings  

Iterated bindings that operate over sequences occur in the same order as the 
sequence. Iterated bindings over maps and sets are unordered. 
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A type  characterizes a collection of values called the type’s domain.  

Types are not values. Instead, types constrain which values may appear in a 

given context. For example, an error will occur if the user attempts to update a  
variable with a valu e that is outside of domain of the type declared for that 
variable. Similarly, an error will occur if arguments provided when a method is 
invoked violate the type constraints given for the method.  

It is possible that a given value may be an element of more than one type.  

5.1 Type expressions 

typeExp ::= optionType  { or optionType } 
optionType ::= atomicType [ "?" ] 
atomicType ::= typeName | "(" typeExp { "," typeExp } ")" 
typeName ::= name [ typeArgs ]   
typeArgs        ::=  of  optionType   [ to optionType  ]  
            |  of "<" typeExp { "," typeExp } ">" 

Types are denoted by type expressions .  

Example 22 Type expressions 

var v1 as Integer                    // type given by name 
var v2 as (Integer)                  // same as Integer 
 
var v3 as Integer?                   // option type 
 
var v4 as Set of <Integer>           // instantiated, 1 arg 
var v5 as Set of Integer             // (alternate form) 
 
var v6 as Map of <Integer, String>   // instantiated, 2 args 
var v7 as Map of Integer to String   // (alternate form)  
 
var v8 as (Integer, String)          // product type 
 
var v9 as (Integer?, Set of String)? // nested type expression 
 
var v10 as Integer or String         // disjunctive type 
 
var v11 as (Integer or String)?      // nested type expression  
 

Example 22 shows the declaration of eleven variables. Each variable is 
declared as being of a type given by the type expression that follows the as 
keyword. The keyword var is short for "variable."  

The following subsections describe the various kinds of type expressions. 

5 Types 
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5.1.1 Disjunctive types 

A disjunctive type in the form t or s includes all of the values  of type t plus the 

values of type s.  

Example 23 Disjunctive type 

MyFun(x as Integer or String) as String 
  if x is Integer then 
    return "Found integer." 
  else 
    return "Found string." 
 
Main() 
  step 
    WriteLine(MyFun(2))       // prints "Found integer." 
  step 
    WriteLine(MyFun("abc"))   // prints "Found string." 
  step 
    WriteLine(MyFun(3.0))     // causes type error 
 

Example 23 shows a function that accepts either an Integer or a String  as its 
argument. A type error occurs when the program passes a value of type double 
(3.0) to the function.  

5.1.2 Option type s 

An option type in the form t? includes all of the values of type t plus the special 

value null. An option type is just shorthand syntax for the frequently used 
disjunctive type t or Null. 

For example, a variable  declared using the option type Boolean? could contain 

either o f the Boolean values true  and false or the value null. 

Note that unlike other many other languages, class types in AsmL do not 
include the null value in their domains. Contexts that permit a null value must 

indicate this explicitly by using an appropriate option type or disjunctive type . 

5.1.3 Product types 

A product  type is an ordering of two or more types in the form (t1, t2, ...) .  

For example, the type (Integer, String) has as values all pairs whose first 
element is an Integer and whose second element is a String. Thus, the pair 

(1, "abc") is a value of type (Integer, String) . (The values of product 
types are called tuples and are denoted inside parentheses with comma-
delimited expressions.) 

A parenthesized type form (t) is equivalent to t. The parenthesized type form 
is not a product type. 
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5.1.4 Named types 

A type may be given by name. Named types  may either be built -ins such as 

Integer and String (see section 5.3 below), or they may be user-declared 
(see section 5.5 below).  

5.1.5 Instantiated types 

A type name followed by type arguments denotes an instantiated type. Type 
arguments are recognizable by the keyword of. 

AsmL provides for  type families . Types that come from type families are called 
instantiated types. For example, Set of Integer, Set of String and Set 
of Char are instantiated types that come from  the built-in type family , Set, that 

defines generic operations for unordered collections of distinct elements .  

Note that type families are not themselves types. In other words, Set is not a 
type but Set of Integer  is . 

Type arguments are given by the keyword of followed by a sequence of 
comma-delimited type expressions  within angle brackets ("<" and ">"). For 
example, of <Integer> and of <String, Integer, Integer>  are type 

arguments. 

If a type argument includes  only one type, then the angle brackets may be 
omitted, as in Set of Integer .  

If there are two type arguments, the syntax "of t1 to t2 " may be used to 
mean "of <t1, t2 >".    

Example 22  above includes instantiated types with type arguments . 

Example 24 Type families 

structure Bucket of T 
  maxB ucketSize as Integer = 10 
  contents as Set of T 
  IsBucketSizeOK() as Boolean 
    return Size(contents) <= maxBucketSize 
 
Main() 
  var b as Bucket of Integer 
  step 
     b := Bucket({1, 2, 3}) 
  step 
     if (b.IsBucketSizeOK()) then 
       WriteLine("Bucket b is not too big.") 
 

Example 24 shows the declaration of a type family  Bucket. The declaration of 

local variable b in the Main()  method refers to a specific instantiated type 
Bucket of Integer  taken from the type family Bucket . In other words, Bucket 
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is a generic family of types from which any number of instantiated types may be 
drawn (based on the specific choice of type T in each instantiated type).   

Note to users  

Type families are often used to describe collections. 

5.2 Operations on types 

Types support three operations: membership testing, enumeration of values 
and conversion. 

With membership testing, it is possible to determine whether any particular 
value is  in the domain of a given type by means of the operator "is." This is 
further described in  section  7.10.2 below. 

For some types (called enumerated types) it possible to query for all values of a 
type's domain. The syntax is "enum of T"; the value produced is a set of values 
of type T. See section 7.13 below for more. 

Type conversion occurs using the operator "as". The form exp as typeExp 
applies an appropriate conversion operation to the value given by exp. AsmL 
uses the CLS convention for defining conversion operations. See section 7.10.3 

below. 

Example 25 Type operations 

class Color 
  Red 
  Green 
  Blue 
 
Main() 
  step 
    WriteLine( enum of Color)   // prints {Red, Green, Blue} 
  step 
    if Blue is Color      
      let x = Blue as Short + 1s         
      WriteLine(x) 

Example 25 illustrates the three type operations.  

5.3 Built-in types 

AsmL includes the following built -in types . 

Type Description 

Null The null value 

Boolean The values true  and false 

Byte  8-bit signed integer s 
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Short 16-bit signed integer s 

Integer 32-bit signed integer type 

Long      64-bit signed integer type 

Float Single-precision 32- bit floating-point format type as specified in 

IEEE 754. 

Double Double- precision 64-bit floating-point format type as specified 
in IEEE 754 

Char   Unicode character  

String Unicode character string; e.g., "abc" 

 

AsmL includes the following built -in type families for collections of values . 

Type Family  Description 

Set of T  Unordered, finite collections of distinct elements of type T 

Seq of T  Ordered, finite sequences of elements of type T 

Map of T to S Tables that map distinct keys of type T to values of type S 

 

Values of the built- in types are given by literals (see 2.6 above) and 

expressions. The AsmL library provides additional operations for built -in types. 
See section 11 below for a list of library operations.  

Note that type String is distinct from the instantiated type Seq of Char even 

though they support almost the same set of operations.  

All of the AsmL-provided types are structures  (see 5.5 below). This means that 
semantic equality (or structural equivalence) forms the basis of equality testing 

for built -in types. 

Note to users 

Although semantic or structural equality is common in mathematics, it is less 

common in the tradition of commercial programming languages.  

For example, with structural equality two sequences are considered to be the 
same value if they contain the same number elements and each element is 

equal. 

One consequence of this view of object equality is that there is no notion of 
"pointers," "references" or "shared memory" for values of any of the built -in 

types. This means, for example, that  two variables, each containing the same 
sequence of Integers, may be independently updated. 
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5.4 Subtypes 

A type may be a subtype of several other types. The hierarchy of types given 

by the type-subtype relation is a directed, acyclic graph.  

If type T is a subtype of type S, then each value in the domain of T is also in the 
domain of S. In other words, all of the constraints associated with type S apply 

to contexts that require a subtype of S. A subtype relationship may be declared 
using the "extends" or "implements" keywords (see section 5.5.1 below).  

A type T that is a subtype of S is said to be a direct subtype of type S if T is not 

a subtype of any other subtype of S.  

Type S is said to be a supertype  of type T if T is a subtype of S. In like manner, 
type S is a direct supertype of type T if T is a direct subtype of S. 

Subtype relationships extend through instantiations of type families of structure 
types but not through instantiations of type families of class types. For example, 
if  T is a subtype of type S then the instantiated type Set of T is a subtype of 

type Set of S, since  Set of T is a structure. In contrast, for the type family 
defined by "class Foo of X ..." , Foo of T would not be a subtype of 
Foo of S when T is a subtype of S.  

5.5 Type Declarations 

type ::= [ attributes ] { typeModifier } 
   ( class | structure  | interface |  
       enum  | delegate | constrainedType ) 

Type declarations introduce new named types, or if type parameters are given, 
new type families. User-declared types (or type families) may be classes , 
structures, interfaces , enumerations , delegates or constrained types . 

In the discussion that follows we use the term "type " to mean a named type. 
This includes, if type parameters are present in the type declaration, any 
instantiated type generated from a type family . See section 5.1.5 above for 
more information about instantiated types. 

A type's members —for example, its fields and methods—consist of local 
members  (whose declarations are nested within the type's declaration) as well 
as all members declared in the type's supertypes. A local method may 

specialize (that is, override or replace) a method given in a supertype. Fields 
may not be specialized by subtypes.  

Attributes and type modifiers  are provided for compatibility with Microsoft's 

Common Language Specification (CLS). They are described below in section 
10.  

Delegates are provided for compatibility with CLS. They are also described 

below.  
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5.5.1 User-declared subtypes 

Type declarations may augment the type hierarchy (that is, establish new 

subtype relations) by means of extends and implements  clauses.  

The types identified by the extends and implements  clauses indicate the direct 
supertypes of the type being declared. For a type family T, the direct 

supertypes of an instantiated type T of <T1, T2, ...> are given by substituting 
its type arguments  into each type family that appears in an extends or 
implements clause of T's declaration. 

Subtypes introduced by extends must match the kind of declaration; for 
instance, it is an error for a class to extend a structure or interface. Classes 
extend classes; structures extend structures; and interfaces extend other 
interfaces. 

Classes and structures may extend only one other class or structure; interfaces 
may extend any number of other interfaces. However, even if an interface 
appears multiple times in the transitive closure of another interface’s direct 
supertypes, the interface contributes its members to the derived interface only 

once. In other words, the same type in several paths of the graph of direct 
supertypes denotes the same instance of this supertype.  

Classes and structures are said to implement the interfaces given by their 

implements clause. (Interfaces  may not implement anything. ) Unless preceded 
by the keyword "abstract," a class or structure that includes an implements 
clause must provide a method ( with method body) for each method of interface  

that is a supertype of the class or structure. 

All interfaces implicitly extend the built -in interface Object. All classes and 
structures imp licitly  implement Object. (AsmL provides the implementation.) 

5.5.2 Interface declarations 

interface ::= interface id [ typeParams ] [ typeRelations ] 
  [ declaration ] 

typeParams ::= of id [ to id ]  
   | of "<" typeParam  {"," typeParam } ">" 

typeParam ::= id [ typeRelations ] 

typeRelations ::= extends typeExps [ implements typeExps ]  
  |   implements typeExps 

typeExps ::= typeExp { and typeExps } 
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Interface declarations  define new abstract types. (An abstract type has no 
corresponding constructor —the values of an abstract type are only of those of 
its subtypes.) 

Interfaces may not contain field declarations, and a method declared within an 
interface may not provide a method body. Thus, interfaces provide a 
vocabulary (or type signature ) without implementation. Methods are described 
in section 6 below.   

Implementation Note 

The current AsmL compiler does not issue an error message if a body is 
provided for a method declared in an interface. (The method body is ignored.)  

This will be corrected in a future release. 

See section 5.5.1 above for how new the extends clause may establish new 
subtype relations. 

Example 26 Interface declaration 

interface IStream 
  Read() as Char 
 

As mentioned in section 5.1.5 above, if type parameters are given, then a type 
declaration (including declarations for interfaces, classes and structures) 
introduces a type family . Example 24  above gives an example of a user -
declared type family. 

See section 5.5.7 below for information on type relation constraints that may 
appear in type parameters. 

5.5.3 Datatype declarations 

class ::= [ enumerated ] class id [ typeParams ] 
   [ typeRelations ]  
   [ variantOrDecl ] 
structure ::= structure id [ typeParams ] 
   [ typeRelations  ]  
   [ variantOrDecl ] 

variantOrDecl ::= declaration | variant  

A datatype declaration introduces a new type of structure or class  (or, if type 
parameters are present, a new type family). Unlike interface declarations, 

datatype declarations may include data fields. 

Structures  and classes are operationally distinct. The difference between them 
is described in section 4.3 above. 
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See section 5.5.1 above for how new subtype relations may be established by 
datatype declarations.  

See section 5.5.4 below for datatype variants. 

See Section 5.5.7 below for information on type relation constraints that may 
appear in type parameters. 

See Section 6 below for a description of members. 

AsmL does not provide the ordering operations <, >, >= and <= for structures. 

5.5.4 Datatype variants 

variant ::= case id [ declaration ] 

Class and structure declarations may include variants, or subtypes declared 

with special in- line syntax.  

A variant of datatype T expands into a new type declaration that extends  T. The 
name the new type is given after the case keyword, followed by member 

declarations of the new type. 

Note to users  

Cases should be used when the intent is to emphasize that a datatype occurs 

in several variant forms (and that the variants have no independent use). 

In contrast, declaring each variant as a lexically independent datatype 
emphasizes the independence of each subtype in an object-oriented style.  

 

Example 27 Datatype variants 

structure List of T 
  case Nil 
  case Cons 
    head as T 
    tail as List of T 
 
first of T  (l as List of T) as T 
  match l  
    Nil()     : throw NoSuchElementException("first") 
    Cons(h, _): return h 
 
Main() 
  x = Cons("a", Nil of String()) 
  WriteLine(first(x))               // prints "a" 
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Example 27 shows a typical use of datatype variants . Instantiated types based 
on the List type family  have two variants: either the value Nil() that 
represents the empty list or a pair consisting of a  head element and a tail list. 
Note that operations defined for datatypes with cases often use pattern 

matching (via the match operator, see section 4.6 above) to process individual 
cases based on the variant's form.  

Example 27 can be translated as the following:  

Example 28 Structure case as subtypes 

structure List of T 
 
structure Nil of T extends List of T 
 
structure Cons of T extends List of T 
  head as T 
  tail as List of T 
 
first of T  (l as List of T) as T 
  match l  
    Nil()     : throw NoSuchElementException("first") 
    Cons(h, _): return h 
 
Main() 
  x = Cons("a", Nil of String()) 
  WriteLine(first(x))               // prints "a" 
 

5.5.5 Enumerations 

enum ::= enum id [ extends typeExp ] [ element ] 
element  ::= id [ "=" exp ] 

Enumeration declarations or introduce new types (called enums ) whose 
domains are given statically within the declaration. 

Enums may be mapped to the integer types, Byte, Short, Integer and Long if 
an extends clause is provided in the declaration. In this case, each element  of 
the enumeration will be a value of the given type, and the enum will be a 

subtype of the given type. If no extends clause is present, "extends Integer" 
is taken as the default.  

By default, the first element of an enum is the value 1b, 1s, 1, or 1l, depending 

on the enum 's supertype. User-provided numeric values may be associated 
with an element of an enum if an equals sign ("=") follows the element. By 

default, elements without user -provided numeric values increase incrementally 
by one. If continued definitions are used, then order is arbitrary between blocks. 

Enumerations support the <, >, <=, >= operators. 
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Example 29 Enumeration with user-provided values 

enum MyEnum extends Integer 
  E_E1  = 10 
  E_E2                                    // has v alue 11 
  E_E3 = 20 
 
Main() 
  let x = E_E1 
  match x  
    E_E1: WriteLine("case 1")            // prints "case 1" 
    E_E2: WriteLine("case 2")            // doesn't print 
    E_E3: WriteLine("case 12")           // doesn't print 

 

Range comprehension is defined for enumerations.   

Example 30 Enum Ranges 

enum Color 
  Red 
  Orange 
  Yellow 
  Green 
  Blue 
  Indigo 
  Violet 
 
x = {Orange..Blue} 
// same as {Orange, Yellow, Green, Blue} 
 
IsWarmColor(c as Color) as Boolean 
   return (x < Green) 

 

Enums are a subtype of Integer or, if so declared, a subtype of any other 

number type. You can say:  

 enum LongBits extends System.Int64 
   mask1 = 0x101010101010110 
 

It is possible to use enums as bit fields. Enum values are subtypes of Integer, 
so you can use BitAnd , BitOr, etc. with them. Note that the result is an 
Integer and must be explicitly converted back into an enum value:  

enum StatusCode 
  ActiveNoError   = 0 
  InactiveNoError = 1 
  ActiveError     = 2 
  InactiveError   = 3 
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IsError(x as StatusCode) as Boolean 
  return (BitOr(x, 2) = 1) 
 
IsActive(x as StatusCode) as Boolean 
  return (BitOr(x, 1) = 0)  

5.5.6 Constrained types 

constrainedType ::= type id [ typeParams ] [ "=" valueExp ] 
valueExp ::= typeExp [ where exp ] 

A declaration of a constrained type introduces a new named type (or type 
family  if type parameters are given) that is defined in terms of another type. The 
name "constrained type" comes from the fact the new type may be defined in 
way that excludes some values (via the "where" clause) of the type on which it 

is based.  

If a value expression is provided, it must be a Boolean valued. The keyword 
value is used as a parameter that will be given an appropriate binding when 

the constraint is checked.  

Constrained types are abstract. (This  means that they define no constructors of 
their own. The constructor of the underlying type is used instead.) 

The declaration of a constrained type establishes a new subtype relation. The 
constrained type is a direct subtype of the type given after the "=" sign. In the 
example below, type SmallInt is a subtype of Integer.  

Example 31 Constrained type 

type SmallInt = Integer where value in {1, 2, 3} 
 
type IntOrString = Integer or String 
 
MyFun1(x as SmallInt) as IntOrString 
  match x 
    1: return 1 
    2: return 2 
    3: return "Neither 1 nor 2" 
 
MyFun2(x as SmallInt, y as SmallInt) as SmallInt 
  return ((x + y) mod 3) + 1 
 
Main() 
  step 
    WriteLine(MyFun1(1))          // prints 1 
  step 
    WriteLine(MyFun1(3))          // prints "Neither 1 nor 2" 
  step 
    WriteLine(MyFun1(4))          // causes type error 
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Example 31 declares two constrained types, SmallInt and IntOrString . The 
example shows how a constrained type can serve as a "type alias," or 

abbreviated way to write a complicated type expression. It also shows how a 
constrained type can be used to factor data-oriented preconditions into to the 

type declaration. It was not necessary to give preconditions to functions MyFun1  
and MyFun2 because the relevant constraint had already been factored into the 
type SmallInt.  

The idea behind constrained types is that it is often convenient to factor 
common preconditions into the type system, rather than by repeating identical 
constraint expressions in many places. Here is an example:  

class Event 
  var IsCurrent as Boolean = false 
 
GetTimeUntilStart(e as Event) as Time 
  require e.IsCurrent 
 
GetTimeUntilFinish(e as Event) as Time 
  require e.IsCurrent 
 
NotifyOrganizer(e as Event)  
  require e.IsCurrent 
 

Each of the methods contains a common precondition that constrains the 
applicability of the method to "current" events. In AsmL 2, we can factor this 
constraint into the type system: 

 
type CurrentEvent = Event where value.IsCurrent 
 
GetTimeUntilStart(e as CurrentEvent) as Time 
 
GetTimeUntilFinish(e as CurrentEvent) as Time 
 
NotifyOrganizer(e as CurrentEvent)  

 
The idea is that the "IsCurrent" constraint would apply as if it were a 
precondition.  

Implementation Note 

This feature is only partially implemented in the current distribution. In the 
present release of AsmL 2, the constraints that follow the "where" clause are 
permitted syntactically but not checked at runtime. This will be changed in an 

updated distribution.  

Nonetheless, it is recommended that constrained types be used as 
documentation of the modeler's intent.  
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It is recommended as a  matter of style to factor common preconditions (i.e., 
preconditions that appear identically in many methods) into a constrained type 
declaration. 

5.5.7 Constraints on type parameters 

The type parameters  given in the declaration of a type family  F may include 
optional type relation constraints  that limit which types may be used when 
creating instantiated types based on F. 

To perform this check, each type in the type arguments of an instantiated type 
is compared with the type relation constraints  given in the declaration of the 
applicable type family . An error occurs if any of the type arguments is  not a 

subtype of every  type given in the type relation constraint  for that type 
argument. 

The syntax of type relation constraints is given above in section 5.5.2. 

Example 32 Constraints on type parameters 

interface ILabel 
 Label() as String 
 
structure LabeledList of <T implements ILabel> 
  MySeq as Seq of T 
  Labels() as Seq of String 
    return [i.Label() | i in MySeq] 
 
class Foo implements ILabel 
  name as String 
  Label() as String 
    return name 
 
Main() 
  let f1 = new Foo("Label 1") 
  let f2 = new Foo("Label 2") 
  var myList as LabeledList of Foo 
  step 
    myList := LabeledList([f1, f2]) 
  step 
    WriteLine(myList.Labels())   // prints ["Label 1", "Label 
2"] 
 

Example 32 shows an example of a type family LabeledList whose 
instantiations are required to be based upon types that implement the ILabel 

interface. Angle brackets (" <" and ">" are used to delimit the type parameters 
and prevent the type constraints from being misinterpreted as LabeledList 's 

implements clause.  
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The Foo class implements ILabel ; therefore, it is permitted may be used to 
create an instantiated type based on LabeledList . 
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member ::= [ attributes ] { memberModifier } 
   ( constant | variable | method  |  
     constraint | property  | event )  

memberModifier ::= shared | virtual | override 
    |  extendedMemberModifier 

Member declarations  define the static vocabulary (such as field names and 
method signatures) that gives the operational behavior of the program.   

Member declarations  consist of fields (either constant or variable), methods, 
constraints, properties and events.  

Members may be prefixed by attributes and method modifiers. These are 

described in section 10 below.  

Properties and events are provided for compatibility with the Common 
Language Specification (CLS) and are described below in sections 0 and 0.  

6.1 Fields 

constant ::= { fieldModifier } [ const ] id  
      ( as typeExp [ "=" exp ] | "=" exp )  

variable ::= { fieldModifier } 
   var id ( as typeExp ["=" exp ] | "=" exp ) 

Field declarations  introduce names that will be associated with values at 
runtime.  

Each distinct occurrence of a relationship between a field name and a value 

during the program’s run is called a field instance. A field declaration may result 
in more than one such name/value association.  

For example, if the field defines an instance-level  variable in a class, there will 

be one name/value association of the given name for each instance of the 
class.  

Section 6.1.5 below describes the various contexts that produce field instances . 

6.1.1 Type constraints on values of field instances 

All fields have an associated type that constrains which values may be referred 
to using the field name. An error occurs if an attempt is made to associate a 
field name to a value that is not in the domain of the type declared for the field. 
The field's type constraint  applies to all field instances when they are initialized 

and, if the field is a variable, when they are updated to a new value.  

The type constraint may be explicitly declared by means of the as clause (in the 
form as  type) or given implicitly by the type associated with the field 

6 Members 
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initialization expression . A field that does not include a type constraint  must 
specify an initial value.  

6.1.2 Constants  

A field instance whose field declaration does not contain the keyword var is 

called a constant. Constants may be optionally prefixed by the keyword const 
(for constant). 

The value of a constant  is its initial value. A compiler error occurs if an update 

statement attempts to change the value of a constant .  

Indexing fields (i.e., those declared within a structure) may not use the keyword 
const. 

6.1.3 Variables  

If the field declaration includes the keyword var, then each of its field instances 
is a variable.  

Variables are implicitly parameterized by a step of an abstract state machine. In 

other words, asking for the value of a variable only makes sense wi th respect to 
a particular step of a given abstract state machine. See section 8.3 below for 
information how abstract state machines are created.  

Update statements (see 8.1 below) are the only mechanism for changing the 
value of a variable. Updates to variables occur atomically during the step 
transition of the abstract state machine that provides the context for the update 
operation. 

Indexing fields (i.e., those declared within a structure) may not use the keyword 
var. 

6.1.4 Initialization of field instances 

A field declaration may optionally include a field initialization expression after an 

equal sign (“= ”) to specify the initial value of each field instance that arises as a 
result of the declaration.  

If there is no field initialization expression, then field instances are initialized in 

the following way:  

• If the field instance is created by invoking a default construction expression 
for an enclosing type, then the initial value will be given as an argument to 

the construction expression. The order of parameters in the default 
constructor is the same order as the field names appear in the type 
declaration.  

• If the field instance is created by invoking a user-provided construction 
expression for an enclosing type, then the initial value will be given by a 
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binding expression in the body of the constructor declaration. This is 
described below in section 6.2.11. 

• In all other cases, the variable will remain uninitialized and any attempt to 
read its value will fail with an error message. 

Field initialization expressions  are evaluated during the initialization of the 

runtime context for each field instance. The initialization expression of a global 
field occurs before the program runs. The initialization of instance-level field 
occurs when a new instance of the class is created.  

The initialization of instance fields is atomic. In other words, the initialization 
occurs in a single step. There is no order of initialization.   

6.1.5 Kinds of fields 

A field is said to be a global field, a local field, an instance -level field or an 
indexing field depending on the form and lexical context of its declaration.  

A field declared outside of a type declaration, or within a type declaration using 
the shared keyword, is called a global field.  Global fields  produce just one 
field instance for the entire run of a program. 

A field declared in a class without the shared keyword is called an instance-
level field. These fields have one instantiation per instance of the class in which 
th e field declaration occurs.  

A field declared in a structure without the shared keyword is called an indexing 
field . Indexing fields (that is, fields declared in structures) are never instantiated 
as field instances. Instead, indexing field names are indexers, or labels that 

identify the constituent parts of a compound value.  

Some fields arise dynamically from the evaluation of expressions. These are 
called local fields and appear in certain expression contexts as described in 

section 7.2 below.  

Note to users  

Informally, one can think of each field instance as a distinct area of the system's 

memory. The memory associat ed with a field instance is never shared with any 
other field instance.  For example, updating a variable has an effect only upon 

the field instance being updated (there is no "aliasing" in AsmL).   

Nonetheless, the memory associated with a field instance may be structured 
into sub-elements and may even store a variable number of elements, including 

complex, nested data structures such as trees and graphs. 

One can view indexing fields as a way to access the components of a 
structured memory in the same manner as bit-fields in languages like C.  
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Another way to see the difference between values of structure types and values 
of class types is as the difference between call-by-value and call-by-reference. 
A method call that takes a structure value as an argument can never modify 
that structure, since call-by-value semantics will be used. In contrast, a method 

that takes an instance of a class as an argument could modify one of the 
variables defined by that instance. Instances of classes use call-by-reference 
semantics. 

(A structure is a series of values grouped together, while an instance of a class 
is a unique object identifier.)  

6.1.6 Indexing field names  

Example 33 Field containing a compound value  

structure Point2 
  x as Integer 
  y as Integer 
 
var myPoint as Point2 = Point2(0, 0) 
 
Main() 
  step 
    myPoint.x := 2 
    WriteLine(myPoint.x)    // prints 0 
  step 
    WriteLine(myPoint.x)    // prints 2 
 

 

Example 33 shows a single field instance (in this case, a global variable named 

myPoint) that contains a compound value  whose structure is given by Point2.  
The value of the global myPoint field instance is indexed by named x- and y -

coordinates.  

Note that the keyword "var" indicates that the field myPoint may be updated. 
The indexers x and y do not need to be annotated with var (and in fact may 

not be) because they never correspond to independent field instances. Instead, 
to determine whether x can be updated, one needs always to find the field 
instance that contains the value of type Point2. 

6.1.7 Indexing parameters  

When compound values  contain a variable number of components, they use 

indexing parameters instead of indexing field names as labels. 

For example, sequences use integer subscripts as indexers, while maps use 
arbitrary values as subscripts.  It is possible in the case of maps for indexing 

parameters to be given as a tuple. 
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The indices of a sequence begin at zero.  

Example 34 Indexing parameters vs. indexing field names 

myList   = ["a", "b", "c"]     
myStruct = Point3(1, 2, 3)     
 
structure Point3 
  x as Integer 
  y as Integer 
  z as Integer  
 
Main()  =   
  step WriteLine(myList(1))         // prints "b" 
  step WriteLine(myStruct.y)        // prints 2 
 

 

Note that the compound values myList and myStruct are both composed of 

three constituent values. In the case of the sequence, these components are 
labeled by integer subscripts. The value named myStruct  uses indexing field 
names to label its internal components.  

Indexing parameters  are tuples of expressions  that evaluate to values of 
arbitrary types. Indexing parameters can be thought of as a generalization of 
array subscripts.  

AsmL provides four built - in datatypes that support indexing parameters : Set, 
Map, Sequence and String .  

The syntax for applying an indexing parameter is m(arg1, arg2, ...) . For 

example, if m is a Map of (String, Integer) to Integer, then 
m("abc", 1) would be used as the lookup operation. 

6.2 Methods 

method ::= [ methodKind ] methodId [ typeParams ] 
   signature  [ stm ] 

methodKind ::= function | procedure  
methodId ::= name | operator ( binaryOp | unaryOp )  
signature ::= params [ result ]  
result ::= as typeExp 
params ::= "(" [ param { "," param  } ] ")" 
param ::= [ attributes ] [ paramModifier ]  
   [ id as ] typeExp   
 

A method declaration associates a name with a param eterized expression.  
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During the run of the program, a method may be invoked  by supplying values 
for each of the method's formal parameters. Method invocation always occurs 
within the context of an abstract state machine. 

6.2.1 Kinds of methods 

Depending on its form and context, a method declaration  (also called a method) 
is one of four kinds: a global method, an instance-level method, a v alue-level 
method or a constructor method. 

Methods declared outside of a type declaration, methods declared as shared 
within a type declaration , converters and operators are called global methods.  

Methods declared without the shared keyword within a class declaration are 

called instance- level methods . 

Methods declared wit hout the shared keyword within a structure declaration 
are called value -level methods. 

Constructor methods have the same name as the enclosing datatype. 
Constructor methods are described in section 6.2.11 below. 

Example 35 Kinds of methods 

m1()  
  WriteLine(“M1”)                 // global method 
 
class C1 
  shared m2()                   // global method 
    WriteLine(“M2”)    
  m3()                           // instance-level method 
    WriteLine(“M3”)           
 
structure S1 
  shared m4()                   // global method  
    WriteLine(“M4”)    
  m5()                           // value-level method 
    WriteLine(“M5”)   
 
Main() 
  c = new C1() 
  s = S1() 
 
  step m1()                     // invoke each method 
  step m2()  
  step c.m3() 
  step m4() 
  step m5( s)        
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6.2.2 Functions and procedures 

The keywords function and procedure  may optionally be used to annotate 

whether a method may make updates to state. Methods annotated with the 
keyword function  may make no updates to state. Methods prefixed by 
procedure  may change state. 

Implementation note 

The current AsmL compiler treats the annotation of function or procedure as a 

comment. A future version of the tool will perform conformance check ing for 
this attribute. 

6.2.3 Operators 

AsmL supports a set of operators for built -in types. In addition to the predefined 
implementations, user-defined implementations can be introduced using 
operator declarations. Operator declarations are top- level declarations; they 

may not be nested inside of a type declaration.  

Dynamic method dispatch  (see section 6.2.7 below) applies to the first 
parameter of an operator. Static method dispatch (see section 6.2.6 below) 

applies to all parameters of an operator. 

Example 36 Example: Operator declaration 

structure Rational 
  num as Integer 
  denom as Integer 
 
operator + (x as Rational, y as Rational) as Rational 
 

6.2.4 Conversion methods 

AsmL is very restrictive with implicit conversions. AsmL does not provide 

implicit conversions  between types, except to allow a subtype to be used in 
contexts where the supertype is expected. 

Every other conversion is defined by global user defined ”ToTARGETTYPE” 

methods, that take a value of the source type, and return a value of the target 
type.  

Example 37 Example: Conversion methods 

structure Dollar 
  value as Integer 
 
ToInteger(x as Dollar) as Integer // global method 
ToDollar(x as Integer) as Dollar // global method 
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Such a conversion method is permitted from source type S to target type T only 

if the following is true: 

• S and T are different types 

• S is not subclass of T, nor is T a subclass of S.  

• Neither S nor T is an interface.  

• Neither S nor T is a generic type.  

Implementation Note 

These conditions are not yet checked. A future version of AsmL will implement 
them.  

6.2.5 Method parameters  

When invoked during the program’s run, the method’s formal parameters are 
bound to actual arguments. In other words, method calls create a new set of 

bindings, specific to a new runtime context for that invocation, of values to the 
formal parameters. 

A method’s formal parameters are the names given in the method’s parameter 

list . The value bound to each formal parameter must be a subtype of the type 
associated with the corresponding formal parameter name. The number of 

formal parameters in a method declaration is fixed.  

Method declarations that do not use the keyword shared and that appear 
within a type declaration are implicitly parameterized by a formal parameter, me, 

that is bound in the runtime context to an entity of the type given by the 
enclosing type declaration. 

Note that the forms x.f() and f(x) are equivalent in AsmL. Methods may be 

invoked using either form. See section 7.11 below. When we speak of a 
method's parameters, we include the implicit initial parameter "me."  

6.2.6 Static method selection 

Static method selection provides additional flexibility in naming methods by 
allowing argument types to disambiguate method names. This is sometimes 

referred to as overloading method names and is determined by the program 
text itself (i.e., the declared types) and not by any runtime type information. 

The built -in operator "+" is an example: 1 + 3  is distinct from "abc" + "def". 

The first means arithmetic plus for integers; the second means string 
concatenation. We can tell statically which version of "+" is intended based on 
the argument types provided, integers and strings in this example.  
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The following describes AsmL's rules for overloading method names.  

A method is said to be applicable if the type of the each argument (as statically 

deduced from the program's text) is  the same type as or a subtype of the type 
given in the method's parameter list. Methods prefixed by the override 
keyword are excluded from the set of applicable methods used to determine 
static method selection. (Such methods are dynamically dispatched, as 
described in section 6.2.7 below.) 

For each method invocation, only one of the applicable methods (called the 
selected method) will be invoked. The selected method is the applicable 
method with the most specific  declared parameters.   

The parameters of method declaration M1 are said to be more specific  than 
those of method declaration M2 if the type of each parameter declared in M1 is 
a subtype of (or the same type as) the corresponding parameter declared in 

M2, provided that at least one type given in M1's parameters is a strict subtype 
of (that is, not the same type as) its corresponding parameter in M2.  

An error occurs if the most specific method of any set of applicable methods  

cannot be determined.  

An error occurs if, for a given invocation, no applicable methods have been 
declared.  

Disjunctive types (see section 5.1.1 above) may participate in static method 
selection. The type T or S will be considered to be supertype of both type T 
and type S for the purposes of static method selection, as described above. The 

types S or T  a nd T or S will be considered to be the same type.  The type 
T or T is the same as type T.  

Constrained types  (see section 5.5.6 above) may be used for the purposes of 

static method selection. Resolution of overloading will occur as if the underlying 
type referenced by the constrained type had been given  in the parameter list of 
the method declaratio n. 

If a method invocation appears within a type declaration and could be 
interpreted either as a call to a global method and as a call to a method 
declared within the type (or its supertypes), then the global method is ignored. 

In other words, instance-level and value-level methods are interpreted as me.id 
(arg1, arg2, … ) if the context allows. This interpretation excludes any global 
methods in the form id (arg1 , arg2 , …) from the set of applicable methods. 

Example 38 Static method selection 

MyPrint(a as Integer, b as Integer) 
  WriteLine("Two integers") 
 
MyPrint(a as Integer) 
  WriteLine("Integer") 
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MyPrint(a as Null) 
  WriteLine("Null") 
 
MyPrint(a as Integer?) 
  WriteLine("Integer or Null") 
 
type Token = Integer or String  
 
MyPrint(a as Token) 
  WriteLine("Integer or String") 
 
type SmallToken = String where Length(value) < 10 
 
MyPrint(a as SmallToken) 
  WriteLine("String") 
 
Main() 
  let a as String = "abc" 
  let b as String or Integer = 1 
  let c as Integer? = 1   
  let d = 1                  // implicit type "Integer" 
  let e = null               // implicit type "Null" 
  let f as Integer? = null  
  let g = "A long string"    // implicit type "String" 
   
  MyPrint( a)                // prints "String" 
  MyPrint(b)                // prints "Integer or String" 
  MyPrint(c)                // prints "Integer or Null" 
  MyPrint(d)                // prints "Integer" 
  MyPrint(d, d)             // prints "Two integers" 
  MyPrint(e)                // prints "Null" 
  MyPrint(f)                // prints "Integer or Null" 
  MyPrint(g)                // runtime error 

Example 38 illustrates the fact that static method selection is determined by the 

declared types of the arguments provided and not their actual values. Note that 
for the value g, the selected method was MyPrint(a as SmallToken), since 
the SmallToken and String are equivalent for static method resolution and 
since String  is a subtype of "String or Integer. " This  invocation results in a 

runtime error because the value of g does not satisfy the constraint given by 
SmallToken (that the string length be less than 10). The presence of a type 
constraint does not affect overloading. 

Implementation Note 

The current AsmL implementation does not support the full overloading 

functionality described in this section. Currently, the overloading "Integer?" is 
not supported. Also, the overloading of disjunctive types is not fully 
implemented. 
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6.2.7 Dynamic method selection  

In addition to the static method selection described in the previous section, 

AsmL supports dynamic method selection, also called dynamic method 
dispatch. Dynamic method selection allows the choice of method to be deferred 
until an actual parameter is provided at runtime.  

AsmL follows the conventions of the Microsoft's Common Language 
Specification (CLS)  in its handling of dynamic method selection. Only the first 
argument to a method ( typically , the implicit argument named "me") affects  
dynamic method selection. Selection is based on the most specific datatype for 
this parameter. 

If a method is to be eligible for dynamic method dispatch, it must be declared 
using the keyword "virtual." Any method that specializes a virtual method 
must be declared using the keyword "override ."  

Example 39 Dynamic method selection 

class Food 
  id as String 
  virtual PrintName() as String 
    return "<Food " + id + ">" 
 
class Fruit extends Food 
 
class Apple extends Fruit 
  override PrintName() as String 
    return "<Apple " + id + ">" 
 
PrintNames(s as Seq of Food)  
  step foreach f in s 
    WriteLine(f.PrintName()) 
 
Main() 
  PrintNames([new Apple("1"), new Fruit("2"), new Food("3")]) 

Example 39 shows a typical use of dynamic method dispatch. Running this 
example with cause the following to be printed: 

<Apple 1> 
<Food 2> 
<Food 3> 
The PrintName()  method is dynamically selected. 

6.2.8 Return values 

A method declaration may specify the type of the value it returns.  

Return values are optional.  
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The return value of a method is the return value of the statement block  that 
forms its body. See the return statement  (section 7.5) for more information.  

6.2.9 Recursive methods 

Method invocations can be recursive. 

6.2.10 Type-parameterized, generic methods  

A generic method has the same form as any other method declaration , except 
that one or more of the parameter and result types depend on locally defined 
type parameters. All of these type parameters are defined in the local type 
parameterization.  

Like a parameterized type family (see section 5.1.5 above), a generic method 
represents a family of related methods. In order to instantiate a generic method 
with actual types, the actual types must either be specified either at the point of 

the application or they must be clear from the context of the method's 
invocation.  

6.2.11 Constructor methods 

AsmL2 allows for user -written constructors, as an alternative to the implicit, 
default constructor. Here is an example:  

Example 40 User-provided constructor  

class Foo 
  var a as Integer 
  const b as String 
 
  Foo( b as String) 
    a = b.Length 

The constructor is given by a method whose name is the same as the name of 

the class or structure that contains it.  

Fields of the structure or class are initialized by the bindings of the constructor. 
In other words, the local bindings of the constructor (including named 

arguments passed to the constructor) provide the initial values of fields of the 
same name. 

The keyword "me" may not appear within the constructor method of a structure 

type. For classes, the keyword "me" may be used within the constructor method, 
but accessing (either reading or updating) any fields by means of the identifier 
"me" will cause an error.  

A continuation constructor may be called from a base class using the syntax 
mybase(arg1, arg2, ...). 
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Example 41 User-provided constructor with inheritance  

class Foo 
   a as Integer 
   b as String 
 
class Bar extends Foo 
   c as Boolean 
   Bar(a', b', c') 
      mybase(a', b') 
      c = c' 

 

If provided, the "mybase" constructor continuation must be the first statement in 
th e constructor that contains it. 

6.2.12 Disambiguation of method names 

If a datatype implements two interfaces, it is possible for an ambiguity in 

method names to arise within an enclosing type declaration. This occurs when 
the two interfaces each declare a method of the same name and same 
argument types. 

To handle this case, it is possible in AsmL to use a qualified name as the 
method identifier in a method declaration. The qualified name includes the type 
name of the interface that provided the method signature. 

When invoking the method, either a type conversion operation must be used or 
the method must be called using the qualified name.  

Example 42 Disambiguation of method names 

interface IStream 
  Read() as Integer 
 
interface IReader 
  Read() as Integer 
 
class Foo implements IStream and IReader 
  IStream.Read() as Integer 
     return 1 
  IReader.Read() as Integer 
     return 2 
 
Main() 
  let f = new Foo() 
  let s = f as IStream 
  let r = f as IReader 
  let val = (s.Read(), r.Read()) 
  WriteLine(val)              // prints (1, 2) 
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Implementation Note 

The functionality described in this section is not yet implemented in the AsmL 
compiler. It is currently not possible to implement interfaces with identical 
methods.  

6.3 Constraints 

constraint ::= constraint [ label ] exp 
label ::= ( id | literal ) ":" 

A constraint is a Boolean-valued condition used to check the integrity of data-
oriented restrictions. A constraint declared within a datatype must always be 
true, or an error will occur. 

Example 43 Constraint declaration 

structure Rational 
  numerator as Integer 
  denom as Integer 
 
  constraint NonZeroDivsor : denom <> 0 
 
Main() 
  let r1 = Rational(1, 2)        // OK 
  let r2 = Rational(2, 0)        // error occurs 
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stm ::= local   
   |  assert 
  |  choice     
   |  return   
    |  operationalStm   
  |  exp  

exp ::= branchExp   
  |  exceptExp 
   |  quantifierExp  
   |  selectExp 
   |  binaryExp 
   | enum of typeExp 
   |  type of typeExp 
   | do stm 
   |  exploration 
 
exps ::= exp { "," exp } 

Statements and expressions  serve three purposes: 1) to express values in 
terms of other values, 2) to query the current state of variables and 3) to 

propose new values of variables that will take effect in the next step of an 
abstract state machine. 

The syntax of AsmL allows an expression to be used whenever a statement is 

expected. In this sense AsmL expressions act as "statements" or "update 
operations" in addition to their traditional role of denoting values. (The converse 
is not true: statements may not be used in contexts that expect an expression.)  

In this section (section 7) we describe statements and expressions that make 
no changes to state. Later, in section 8, we describe state-changing operations. 

7.1 Statement blocks 

When invoked at runtime, statement blocks  (that is, a list of  stm  productions) 
create field instances for local fields, check runtime constraints, evaluate 

expressions and optionally yield a return value.  

A number of contexts in the grammar expect statement blocks to provide the 
meaning of operations. Statement blocks occur inside: 

• a method declaration (see section 6.2 above), as the method body , or 
operation performed when the method is invoked during the run of the 
program; 

• a parallel update statement (see section 8.1.3 below), to effect the 
individual updates of each parallel binding; 

• a step of a sequential block (see section 8.3 below), to configure an 

7 Statements and 
Expressions  
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abstract state  machine's variables in the following step;  

• a nondeterministic choice expression (see 7.4 below), to operate on the 

value chosen; 

• each branch of an if -then-else expression (see section 7.6.1 below), to 
indicate the operation performed if the conditions given in the conditional 

guard expression are satisfied;  

• each case of match expression (see section 7.6.2 below), as the operation 
performed when the case's pattern matches a given value;  

• a try block (see section 7.7 below), as the protected operation;  

• each case of exception handler (see section 7.7 below), as the operation 

performed when an exception matches the selection  criteria of the handler.   

A statement block begins with zero or more declarations  of local fields . After the 
local declarations may appear zero or more assertions. After the assertions 

may appear zero or more expressions.  

An optional return clause terminates the statement block. The expression 
given after the return  keyword becomes the value of the statement block . If no 

return clause is used, the block does not return a value.  

In general, AsmL statements execute in parallel. Updates to state do not take 
effect immediately. As a consequence, AsmL imposes only partial order on the 

evaluation of  the expressions given in a statement block: 

• The expressions  that give the initial values of the local fields  are evaluated 
prior to any precondition assertions.  Currently, local field instances are 

initialized in the order of their appearance in the block. (In a future version 
of AsmL, local fields will be initialized using a partial order given by 
resolving any field-to-field value dependencies.) 

• Preconditions  will be evaluated prior to statement-level expressions in the 
block. 

• Statement-level expressions will be evaluated prior to providing the return 

value to the calling context. If there is no return value, then the evaluation 
of statement-level expressions in the invocation of the block is not 
considered to be synchronous (that is the caller need not wait for 
completion). The order of evaluation of each expression in block is not 

constrained. This includes the evaluation of the expression that provides 
the return value.  

• Postcondition assertions will be evaluated after the block's statement . An 

AsmL implementation must delay the evaluation of postconditions until all 
updates of the current step have been performed. In this sense, 
postconditions can be seen as cons traints on the application of updates. 
There is no guarantee that the postcondition will be evaluated prior to the 
delivery of the statement block's return value in its invocation context. 
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7.2 Local fields 

local  ::= letBinding  
   |  { localVariableModifier } localVar 
letBinding ::= [ let ] pat "=" exp 
localVar  ::= ( var | initially ) id 
     ( as typeExp ["=" exp ] | "=" exp ) 

Statements that are similar to  field declarations (see section 6.1 above) in form 
and meaning may occur within statement blocks as a means of introducing 

local fields, either constants or variables. 

Local fields  have one field instance (see section 6.1.5 above) for each 
invocation of their enclosing statement block . Local fields are both locally 

scoped and ephemeral; that is, they are visible in their scope during the lifetime 
of the runtime context associated with the particular invocation of the statement 
block .  

The scope of local fields is the region of their statement block that follows their 
declaration. (There is one exception to this; see the "step" statement in section 
8.3.3 below.) 

Local constants  are introduced as the result of pattern-based bindings in the 
form  let pattern "=" exp  (see 4.6 above). A pattern-based binding may 
establish more than one name/value association. 

Note to users  

The let keyword is optional when introducing local constants; however, it s use 

is recommended as a matter of style to avoid confusion with the Boolean 
expression for equality testing, x = y.  

As a way to introduce local variables the keyword "var" is interchangeable with 

the keyword "initially." The latter emphasizes the role of a local variable 
within the algorithm given in a method body. 

Statements that introduce local variables have the form as variables  given by 
field declarations.  

Example 44 Local fields 

class Identifier 
 
Main() 
  var x = new Identifier() 
  let (a, b) = (“abc”, “def”) 
  let c as String = a 
  let y = x 
 

Note to users  
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The expression that provides the initial value of a local field is evaluated only 
once in any invocation of a statement block.  

This means that any local fields initialized by nondeterministic expressions 
(including expressions that return a different value every time they are invoked, 
such as the class construction operator "new"), can be relied upon to contain 
just one value for the duration of the invocation context.  

7.3 Assertion statements 

assert ::= constraint | require | ensure   
require ::= require [ label ] exp 
ensure ::= ensure [ label  ] exp 

An assertion constrains the behavior of the running program for the purposes of 
error checking. An AsmL implementation may optionally halt the program’s run 

if an assertion’s constraint has not been met, but assertions do not otherwise 
affect the meaning the program's run.  In particular, a precondition or 
postcondition may not cause an update statement to be evaluated.  If it does, an 
error will occur. 

There are three forms of assertions: preconditions, postconditions and data-
oriented constraints. These are introduced by the keywords require, ensure 
and constraint, respectively.  

The expression given by a precondition is a predicate that must evaluate to 
true if the constraint is to be satisfied. The predicate is evaluated in a context 
that includes the statement block's local field instances . 

The expression given by a postcondition  is a predicate that must evaluate to 
true if the constraint is to be satisfied. The predicate is evaluated in a context 
that includes statement block's local field instances and, if the statement block 

includes a return statement, a binding of the identifier result to the statement 
block's return value.  

Constraints introduced within statement blocks are have the same syntax as 

constraints declared as members. See section 6.3 above for the syntax. Like 
preconditions, constraints check that a Boolean condition is true. However, 
constraints offer the additional feature of checking that the condition is true 

even when updates to variables occur. 

Example 45 Runtime assertion  checking 

Incr(x as Integer) as Integer 
  require x >= 0 
  ensure result = x + 1 
  return ((((x + 1) * 2) - 2) / 2) + 1 
 
Main() 
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  step WriteLine(Incr(1)) 
  step WriteLine(Incr(99))   
 

 

The special form resulting selectExpr may be used within a postcondition 

to constrain the update set of the current step . The resulting expression returns 
the value that the variable designated by the selectExpr (see section 8.1.2) will 
have in the following sequential step of the current abstract state machine.  

This value is only known after the update set has been completly determined 
(that is, just prior to beginning of the subsequent sequential step).  

Thus, the checking of a postcondition constraint that includes a "resulting 

expression" is not synchronized with the statement block in which it occurs. 
Instead, the constraint will be checked later, after all (parallel) updates have 

been calculated for the current step. 

Example 46 Use of a resulting expression 

var Counter = 1 
 
Increment() 
  require Counter >= 0 
  ensure resulting Counter = Counter + 1 
   
  Counter := ((((Counter + 1) * 2) - 2) / 2) + 1 
 
Main() 
  step Increment() 
  step WriteLine(Counter) 
  step Increment() 
  step WriteLine(Counter) 
 

Compatibility Note 

The behavior of the resulting expression may differ from this description in the 

current AsmL 2 implementation. 

The current AsmL2 implementation does not take into consideration all of the 
updates. The resulting expression queries the statement block's contribution to 

the current update set of the expressions with respect to a given location (see 
7.5.1). In other words, it yields the value of a location after any updates created 

within the block will have been applied.  

Since the order of expression evaluation is not given, the values returned by 
"resulting expressions" in AsmL 2 cannot be predicted in every case without 

introducing substeps at a lower level of abstraction than given in the model. 
(The value will be predictable in cases where a "total" update has occurred.)  
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7.4 Nondeterministic choice statements 

choice ::= choose [ unique ] binders  stm  

   [ ifnone stm ]  

Choose-expressions  using the keyword choose bind names to values using 

nondeterministic choice.  

A statement-level choose-expression begins with the keyword choose and 
includes a statement block. In this form, all of the bindings established by the 

binders clause will be available for reference within the statement block.  

A statement-level choose-expression may optionally provide an ifnone clause. 
If the choose-expression provides no bindings (for instance, when choosing 

from the empty set), the ifnone statement block will be evaluated. In that case, 
the value of the choose-expression is  the return value of the ifnone  statement 
block . Otherwise, the return value is that of the statement block following the 
binders clause. 

If no ifnone  clause is provided for a statement-level choose-expression then it 
defaults to "ifnone skip".  

Example 47 Statement-level nondetermism 

Main() 
  S = {"a", "b", "c"} 
  choose i in S 
    WriteLine(i + " was chosen.") 
 

 

The keyword unique may be added as a constraint to indicate that the 
selection is deterministic. An error will occur if the unique keyword has been 

used and there is more than one possible value to be selected. 

7.5 Return statements 

return    ::= return exp 

A return statement is used as the last statement of a block to indicate the return 

value of that block. 

AsmL does not issue an error if the return value of a statement block (or 
method) is ignored in the calling context. 

Note to users  

Unlike many other languages, AsmL uses "return" to indicate the value returned 
from a statement block, not from a method. The return statement has no effect 

on control flow.  
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7.6 Conditional expressions 

branchExp ::= ifExpr | matchExpr 
ifExpr ::= if exp [ then ] stm  
   { elseif exp [ then ] stm }  
   [ else stm ] 
matchExp ::= match exp case [ otherwise stm ] 
case ::= pat [ where exp ] ":" stm  

All conditional expressions in AsmL that return values are in the form if exp 
then expr1 else expr2.  

The expression that follows “if” must be of type Boolean and is called the 
conditional guard. The value of a conditional expression is the value of expr1 if 

the guard evaluates to true; otherwise it is expr2. Only one of expr1 and 
expr2 will be evaluated. If no else clause is provided, then the default is "else 
skip".  

Conditional expressions may be in the form of an if -then-else expression, a 
match expression or a logical operation. 

Note to users  

The intent of guard expressions is to control which of the br anches of the 
conditional expression will be taken. 

It is generally a poor modeling approach to allow guards to update variables. 

Future versions of AsmL may generate a runtime error if the evaluation of a 
guard results attempts to alter state by updating variables.  

7.6.1 If-then-else expressions 

If-then-else expressions  with elseif clauses are normalized as follows: 

if g1 then e1 elseif g2 then e2 else e3 

is interpreted as 

if g1 then e1 else (if g2 then e2 else e3)  

A value- level if -then-else-expression must always provide an else expression. 

(A value-level expression returns a value. This is in contrast to a statement-
level if that return a value.)  

Note that elseif and else if are distinct in terms of the layout rules for block  

structure given in section 3.1 above. 

The keyword then is optional.  

7.6.2 Match expressions 

The simplest match expression is the single-case form  
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match exp pattern : stm 

Expressions in this form attempt to pattern-match pattern (in the manner 

described in section 4.6 above) with the value given by evaluating exp  in the 
current context. If the match succeeds, then the bindings  given by the pattern 
are established in a new scope and the statement block  given immediately after 
the matched pattern is evaluated. An error occurs if the exp does not match 
pattern , unless an otherwise alternative is given. 

Match-expressions with more than one case can be interpreted by nesting.  

match v  

    pattern1: stm  

    pattern2: stm  

Match can be interpreted as the following:  

if pattern1 matches v then  

   pattern1 = v  

   stm   

else (if pattern2 matches v then 

         pattern2 = v 

         stm  

      else  

         throw NoMatchException) 

See section 4.6 above for examples of matching. 

7.6.3 Defaults for conditionals  

AsmL consistently uses "skip" as the default for statement-level conditionals 
and "error" as the default for conditionals that return a value.  

For example “ifnone skip” is the default for statement-level choose and 
“ifnone error ” is the default for expression- level choose. (Expression-level 
“choose” occurs when the statement block includes a return statement.)  

For example,  

let x = choose s in {} 
             add s to ChosenValues 
             return s 

would produce a runtime error, since there is no value to return.  In contrast, 

choose s in {} 
   DoSomething() 
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would just skip (i.e., do nothing without causing an error).  

All other conditional forms make the same distinction between statement -level 

and expression -level defaults:  

if ... then         "else" is optional; assume “else skip” in statement 

contexts, “ else error” in expression contexts where a 
return value is expected.  

match ...            If no matching case found, assume “otherwise skip” in 

statement contexts, but assume “otherwise error ” for 
expression-level match.  

It is also possible to write an expression-level if that does not have an else 

clause: let x = if a > 0 then 4.  In this example, a runtime error occurs if a 
is not greater than 4.  

7.7 Try/catch expressions  

exceptExp ::= try stm catch case  
            | throw exp  
   | error exp 

AsmL supports exception handling with try/catch expressions. 

The value of a try/catch expression is value of the statement  block given in the 
try clause unless an exception occurs. 

An exception can be generated explicitly using an expression of the form throw 
exp, where exp evaluates to a reference of an object that is derived from 
System.Exception class, or it may arise from a runtime event such as a 

divide-by-zero error. 

If an exception occurs during the evaluation of the try block, then exception 
handling is invoked as follows.  

First, all updates that were collected inside the try block are discarded.  

The creation of new instances of classes during the evaluation of the try block 
is not reversed when an exception is thrown. This allows, for example, a newly 

created instance to be used as the exception (that is, as the value of a throw 
expression). The value of each field of the new instances will be the initial value 
given by the instance's constructor.  

Next, the exception (raised by a throw expression or generated by the runtime 
environment) is matched against the cases given in the catch clause. The form 
of the exception cases is identical to the cases of a match expression. Pattern 

matching (identical to that of match) is used to determine which error case 
applies. 
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If an error case is matched, then the value of the statement block  of that case is 
the value of the try/catch expression. (Updates introduced by the matched 
exception handler become part of the current step.) 

If no exception handling case matches the value thrown, then the exception is 
thrown in the runtime context that contains the try block. The process proceeds 
recursively, and the program halts if no handler can be matched in the 
outermost context. 

If more than one exception is thrown within the current step of the current 
abstract state machine, only one (chosen nondeterministically) will be matched 
against cases given in the catch clause. 

The expression error exp can be used to express an unrecoverable error. The 
expression can be any expression, for example a string.  (You do not need to 
define an exception data type to signal an error.) "Error" may be used in any 

statement context. Like "return ," the keyword "error" is not followed by 
parentheses.  

Errors may not be processed by any exception handler. The program will halt 

when an error occurs. 

function F(x as Integer) as Result 
  Y := y + 1 
  if P(x, y) then 
    return ok 
  else  
    error “F’s condition violated” 
 

7.8 Quantifying expressions 

quantifierExp ::= forall binders  holds exp  
     |  exists [ unique ] binders    

Quantifying expressions return true or false depending on whether a condition 
(given by exp) has been met universally  over some collection of bindings or 
existentially by at least one example.  

The universal quantifier consists the keyword forall followed by one or more 
binders for which a given condition must hold (given by the holds clause) if the 
quantifier is true.  If the binders produce no bindings (for instance, if they 
iterate over an empty set), then the expression given by the holds clause is not 

evaluated, but the value of the forall expression is true.  

The bindings produced by the forall expression may be referenced within the 
expression given by the holds clause. 

The existential quantifier consists the keyword exists followed by one or more 
binders. If all of the names given in the binders may be bound to values, then 
the existential quantifier is true. If the binders produce no bindings (for 

 

 Fehler! Formatvorlage nicht definiert.  70 

instance, if they iterate over an empty set), then the value of the exists 
expression is false. 

Example 48 Quantifying expressions 

S = {1, 2,  3, 4, 5, 6} 
 
odd(i as Integer) as Boolean  
  return (1 = i mod 2) 
 
Main() 
  v1 = forall i in S holds odd(i)                      // false 
  v2 = exists i in S where i > 4                       // true 
  v3 = forall i in S where i > 4 holds odd(i)          // false 
  v4 = forall i in S where i > 100 holds odd(i)        // true 
  v5 = forall i in S holds exists j in S where i < j   // false 
  v6 = exists i in S where exists j in S where i < j   // true 
  v7 = exists i in S, j in S where i < j               // true 
  v8 = exists i in S, j in S where i + 1 = j           // true 
  v9 = forall i in S, j in S holds i mod j < 6         // true 
  WriteLine([v1, v2, v3, v4, v5, v6, v7, v8, v9]) 
 

7.9 Selection expressions 

selectExp  ::= selector comprehension [ifnone exp] 
selector ::= any | the | min | max | sum 

A selection expression is used to query for values from a domain given by a 

comprehension clause.  (Recall from 4.5 above that comprehensions are in the 
form exp  |  binder1,  binder2, ...) 

The value of a selection expression  depends upon the selector keyword.  

• For "any," the value of exp for any one of the bindings produced by the 
binders clause. The selection is nondeterministic.   

• The keyword "the" adds a constraint: there must be exactly one possible 
binding, or an error occurs. 

• The keywords "min" and "max" are used to select the smallest and largest 

values possible. (The operations ">" and "<" must be defined for the data 
type in question.) 

• The keyword "sum" causes the value returned to be the arithmetic sum of 

all values given by exp. (The operator "+" must be defined for the data type 
in question.) 

An error occurs if the binders produce no bindings, unless the optional ifnone 

clause is provided. In this case, the value given after ifnone provides the 
default value of the selection expression.  
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Example 49 Value-level nondeterministic choice 

Main() 
  let S = {1, 2, 3, 4, 5} 
  step  
    let y = any i | i in S where i < 4 
    WriteLine(y)                        // prints 1, 2, or 3 
  step 
    let z = the i | i in S where i < 2 
    WriteLine(z)                        // prints 1 
  step 
    let w = sum i + 1 | i in S           
    WriteLine(w)                        // prints 20 
 

Example 49 includes two local fields whose values come from choose 
expressions. The first can be read as "let y equal any i such that i is an 
element of S where i is less than 4." The second reads as "let z equal the 

(unique) i such that i is an element of S and i < 2" 

The selectors min, max and sum are deterministic and return the minimum 
element, maximum element and the sum of all elements described by the 

comprehension. 

Example 50 Selection expressions 

const S = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} 
const T = {-1, 2, 3, 5, 7} 
 
IsOdd(x as Integer) as Boolean 
  return (x mod 2 = 1) 
 
Main() 
  let v1 = (any x | x in T where IsOdd(x) and x > 0) 
  let v2 = (the val | val in T where val notin S) 
  let v3 = (max x + y | x in S, y in T)  
  let v4 = (min x | x in S + T) 
 
  // v1 is one of {3, 5, 7} 
  // v2 is -1 
  // v3 is 17 
  // v4 is -1 

 

Although parsing without parenthes es works, it is considered to be good style 

to put parentheses around every selection expression.  

7.10 Primary Expressions 

binaryExp ::= primaryExp { binaryOp primaryExp } 
primaryExp ::= unaryOp applyExp 
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  |  applyExp [ ( is | as )  typeExp ] 
  |  resulting exp 

unaryOp ::= not |  "-" 
binaryOp ::= implies | and [ then ] | or [ else ]  
   | "*" | "/" | mod | "+" | "-"  

   | union | intersect | merge   
   | subset | subseteq | in | notin 
   | "=" | "<>" | "<" | ">" | "<=" | ">="  
   | eq  |  ne  | lt  | gt  | lte  | gte 

Primary expressions consist of logical operations, arithmetic operations, and 
the invocation of methods. 

The meaning of the logical operators is given above in 7.7.  

The arithmetic  and relational expressions are defined in the AsmL library. They 

appear in this reference only by virtue of their special syntactic form.  

To be written: Give a precedence table.  

7.10.1 Logical operations 

The logical operations and and or are commutative in AsmL.  There is no 
implied order of evaluation of the operands. 

Alternate forms are provided for the case of "sequential and" and "sequential 
or" where the order of evaluation is significant. The meaning of the logical 
operators and then, or else  and implies are given by the following table. 

E1 and then e2 if e1 then e2 else false 

E1 or else e2 if e1 then true else e2 

E1 implies e2 (not e1) or e2 

7.10.2 Type query expressions 

Type queries are Boolean expressions that return true if a value is of a given 
type. Type queries are in the form applyExpr is type. See section 4 above for 
more about types.  

7.10.3 Type coercion expressions 

AsmL allows the user to convert types using expressions in the form addExpr 
as type. The type coercion operator invokes the converter method that applies 
to the type being converted. 

Conversions among built- in types are provided in the runtime library. See the 
accompanying document: “AsmL Standard Library Reference”. 
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Example 51 Type conversions of built-in types 

Main() 
  //conversions using convertors 
  step WriteLine(1b as Short)        // prints 1 
  step WriteLine(1 as Double)        // prints 1.0 
   
  // conversions using functions 
  step WriteLine(ToInteger(1.9))     // prints 1 
  step WriteLine(ToChar(“a”))        // prints 'a' 
  step WriteLine(ToSet([1,2,1]))     // prints {1, 2} 

7.11 Apply expressions 

applyExp  ::= atomicExp { argList }  
   | mybase arglist { argList  } 
argList   ::= "(" [ exps ] ")" | "." id [ typeArgs ] } 

Apply expressions are used for global method application , instance-level 

method application, map application, field access  and constructor invocation. 
This form also appears in the update statement  given in 8.1 below and in the 
resulting expression given in 7.3. 

Global method application  is in the form id (arg1, arg2, …).  Note that 
method names do not denote values in AsmL. Thus, a  "method" is never the 
value of an expression.   

Instance- level method application  is in the form atomicExp . id (arg1,  
arg2, …)  where the value of atomicExp is an instance of a class or a 
compound value of a structure. Section 6.2.6  describes how a method is 
selected for application based on the types of its arguments.  

Map application  is in the form exp (arg1, arg2, …) where the value of exp  is a 
map (that is, a value of type Map). The value of the expression is an element of 
the map's range. If a tuple matching (arg1, arg2, …) is not in the map's 

domain, an exception is thrown. Otherwise, the result is the matching range 
value. 

Field access  is in the form exp.id where exp is a value of a datatype that 

includes id as a field. Note that id is equivalent to me.id within a type 
declaration for fields defined within the type (or any of its supertypes).  

AsmL allows additional flexibility in how methods are applied to arguments. 

Two syntactic forms may be used: either x.f(a, b) or f(x, a, b). These 
forms have equivalent meaning.  

   class C 
     f(x as A) 
 
   Main() 
     c.f(x)  
     f(c, x)         // means the same as c.f(x) 
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The form mybase(arg1, arg2, ...) is used within a method to invoke the 

corresponding method of a direct supertype. (The method must have been 
specialized using the override keyword.)  

Example 52 Invocation syntax  

f()  
  WriteLine("Global method f() was invoked.") 
 
class Foo 
  i = "Field i was accessed." 
  g() 
    WriteLine("Instance-level method g() was invoked.") 
 
h = {1 -> "Map h was applied with (1) as argument", 
     2 -> "Map h was applied with (2) as argument"} 
 
Main() 
  c = new Foo() 
  step f()               // global method invoked 
  step c.g()             // instance method invoked 
  step WriteLine(h(1))   // map application 
  step WriteLine(c.i)    // field access 
 

7.12 Atomic expression 

atomicExp   ::= constructor | me | value 
   | "(" exp ")"  
   | id [ typeArgs ] 

Atomic expressions denote a value in the form of a constructor , a named value 
expression or the keyword me. 

Constructors  of values are given in 4.3. 

A named value expression  consists of an identifier. It denotes the value of a 

field instance (either a constant or a variable) whose name is the same as the 
given identifier. For variables, the value returned is always with respect to the 

current step of the an abstract state machine)  

The name may be local, instance-based or global. The interpretation of the 
name follows AsmL's priority of name visibility: local first, instance- level second 

and global third. 

The keyword me may be used as an expression within a class declaration's field 
initialization expressions and instance-level methods to denote the current 

instance of the class in the invocation context. It may also be used in the 
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where-clause of a constrained type if the underlying base type is a reference 
type.  

The keyword me may be used as an expression within a structure declaration's 
value-level methods to denote compound value in the invocation context. The 
keyword me may not be used in a structure's declaration 1) as part of any field 
initialization expression  or 2) on the left hand side of an update statement . 

The keyword value may be used as an expression within the setter of a 
property, the adder or remover of an event, or within the where-clause of a 
constrained type if the underlying base type is a value type. 

7.13 Enumerated types 

In AsmL, “ enum of x ” where x is a type expression may be used to mean the 
set of all values of a given type. The keyword enum is short for "enumeration," 
so "enum of T" means an "enumeration of all values of type T."  

Example 53 Enumerated types 

Main() 
  step foreach  val in enum of Boolean 
    WriteLine(val)         // prints true, false or false, true 
 

If “enum of T” is used in a context where a set of values is expected, the type 
must be computationally enumerable . (Otherwise you may not query for its 

values.) The following built -in types are computationally enumerable: Boolean, 
Char and Null. All other built -in types are not enumerable.  

Whether type T is enumerable or not, the expression x is T is available to test 

whether x is a value of type T.  

There is no way to test whether a type is enumerable.  

A d isjunctive type T or S  (see section 5.1.1 above) is computationally 
enumerable if both type T and type S are enumerable types. An option type T? 
(see section 5.1.2 above) is computationally enumerable if type T is an 
enumerable type.  

Example 54 Enumerable disjunctive types 

Main() 
    step foreach val in enum of Boolean or Null 
    WriteLine(val)         // prints true, false and null 
 

 

A user-defined structure or product type is computationally enumerable if all of 
its fields are enumerable. 
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Example 55 Enumerable structure type  

structure Flag 
   f1 as Boolean 
   f2 as Boolean 
 
Main() 
  step foreach f in enum of Flag 
    WriteLine(f)   // Flag(true, true), Flag(true, false),  
                   // Flag(talse, frue) and Flag( false, false) 

User-defined classes  may optionally be declared as enumerable. The keyword 
"enumerated" may precede a class declaration to indicate all instances of the 
class should be tracked. (Note that instances of enumerated classes may be 

reclaimed by the garbage collector  over time.) 

Example 56 Enumerated class  

enumerated class A 
 
Main() 
  step 
    let a1 = new A() 
    let a2 = new A() 
  step  foreach  x in enum of A  
    WriteLine(x)             // prints two values 

 

Note that a step is required in this example. If there were no "step" separating 

the invocation of "new" and the "forall" statement, then there would be no 
values for the iteration, since the update to "A" takes effect as of the next step.  

User-defined enums are enumerable.  

Example 57 Enumeration of enum values 

enum Color 
  Red 
  Green 
  Blue 
 
Main() 
  WriteLine(Size(enum of Color))        // prints 3 

 

A constrained type defined by "type where expr" (see section 5.5.6 above) is 

computationally enumerable if the type given is enumerable. In addition, a 
constrained type is enumerable (regardless o f whether the type given before 
the where keyword is enumerable) if the expression following the where 
keyword is in the form "value in expr2".  
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Example 58 Enumeration of constrained type  

type MyType = Integer where value in {1, 2, 3} 
 
Main() 
  WriteLine(Size(enum of MyType))       // prints 3 
 

Compatibility note  

The functionality described in this section is not fully implemented in the current 
version of AsmL (but will be in a future release). The current implementation 

differs from the description given above in that 1) all structures and conjunctive 
types are not enumerable and 2) all option types and disjunctive types are not 
enumerable. Also, the current implementation accepts only a type name 
instead of the more general type expression in an "enum of" expression. 

7.14 The do expression 

The form do statement-list allows a statement block to be placed in a context 
that would otherwise expect an expression. The value of the do expression is 
given by the return  statement in the block. 

Note to users  

The do expression is not  normally needed in modeling. It is provided for 
orthogonality. For example, "do" might be used by a code-generation tool or 
compiler for inlining.  
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operationalStm ::= update 
  |  parallelUpdate  
    |  sequence  
   |  skip 

This section describes the part of AsmL that deals with runtime state. 

AsmL uses the semantics of abstract state machines as the framework for the 
dynamic aspects of the program. The practical effect of this is that AsmL has 
runtime contexts  called states with fixed associations of variable names to 

values. The change from one state to another occurs as an atomic transaction 
called a step. Within a step, any number of changes to variables may be 
proposed (by means of the update statement described below), but the 
changes have only effect for subsequent states. Within a given state, variables 
always have the same, fixed values. 

New runtime contexts may be established in four ways: 

• A sequential block (in the form step  ... step ...), also called a machine , 
denotes a series of runtime states. It is possible that one or more of the 
steps may be iterated. The accumulated changes from all the steps will be 
proposed as updates in the current runtime context. This is described 
below in section 8.3.  

• A process  is a distinct runtime context associated with the invocation of a 
method. It differs from a machine in that accumulated changes from its run 
are not integrated as updates into the runtime context that spawned it .  

• An agent  is a separate area of memory (that is, a distinct collection of field 
instances) with associated operations that occur on demand as 
transactions. 

• An exploration expression creates a tree of runtime states by exploring all 
nondeterministic execution paths for a given expression. The result of 
exploration is a collection of values taken from each possible state. Like 

processes, the accumulated changes to state from subprocesses are 
discarded. This is described below in section 8.7.  

8.1 Update statements 

update      ::= applyExp ( ":=" | "*=" | "+=" ) exp  
   | add exp to applyExp 
   | remove exp [ from applyExp ] 

Update statements determine a new value for the variable given by applyExpr 
in the following step of the abstract state machine associated with the current 
invocation context. There are three kinds of update statements: The update 
operator “:=” replaces the old of a variable with a new one in the next step. The 

8 State Operations 



 

 Fehler! Formatvorlage nicht definiert.  79 

add … to operation adds an element to a set. The remove … from operation 
removes an element from a set or map.  

The form x := exp is equivalent to x := x + exp. 

The form x *= exp is equivalent to x := x * exp. 

Note that an update statement  has no effect on the value associated with the 
given variable  in the current step. Instead, the variable  will be associated with 
the proposed value as of the subsequent sequential step of the current abstract 
state machine.  

Example 59 Update statement 

var i = 3 
 
Main() 
  step while i > 0  
    i := i – 1              // updates i for next step 
    WriteLine(i)            // prints 3, prints 2, prints 1 
 

 

Example 59 contains an update statement, i := i – 1, that causes the 

decremented value of variable i to become the value of i in the next step of the 
abstract state machine introduced by the step expression. Note that the 
WriteLine  expression will write the current value of field i in each step, not the 

proposed value, even though the update statement occurs in the source before 
the WriteLine statement.  

Update statements  do not return a value. 

Example 60 Update statements 

f1 = 100                        // global constant 
var f2 = “abc”                  // global variable 
var f3 = {1, 2, 3}              // global var w/ compound value 
 
class Foo 
  var f4 = “abc”                // instance variable 
  shared var f5 = “efg”         // global variable 
   
Main() 
  c = new Foo()                 // local constant 
  var f6 = “abc”                // local variable 
  step   
    f1 := 200                   // error! “f1” is constant 
    f2 := “def”                 // OK, update global variable 
    remove 2 from f3            // OK, update indexer 
    f4 := “efg”                 // error! “f4” is out of scope 
    c.f4 := “efg”               // OK, update instance variable 
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    f5 := “hij”                 // error! “f5” is not visible 
                                // in the current scope 

    c.f5 := “hij”               // OK, update global variable 
                                // that is in the scope of c 
    c := new Foo()              // error! “c” is constant 
    f6 := “def”                 // OK, update local variable 

 

8.1.1 Consistency of update statements 

All update statements invoked with respect to a step of an abstract state 

machine must be consistent , or the error InconsistentUpdate will be thrown.  

Consistent in this context means that no contradiction could arise as a result of 
the update. For example, if S is a set-valued variable, then any update that 

adds elements to S would be considered to be consistent, since each addition 
could be considered to be independent of any other addition. In contrast, if x is 
an Integer-valued variable, then updating x to the value 3 and the value 4 in the 
same step would be produce a contradiction.  

8.1.2 Locations 

The left-hand side of an update statement  identifies the variable  (a specific field 
instance) whose value will become the proposed value (given by the right -hand 
side of the update statement ) in the subsequent step.  

The syntactic form used on the left-hand side of an update statement is called a 
location . It consists of a variable  followed by optional indexers , as described in 
sections 6.1.6 and 6.1.7 . 

Identifying which of a location’s terms constitute the variable being updated and 
which are indexers is not evident from the syntax.  However, the distinction 
between variables  and indexing fields can be determined from the field 
declaration's form and whether the field declaration was nested in a class or 

structure declaration.  

Note to users 

Most users of AsmL may safely ignore the distinction between variables and 

indexers, since it only becomes important in determining whether an update-
related inconsistency has occurred in the relatively infrequent case of nested 

structures. An examp le of a nested structure is a Map that contains other Maps 
as elements in its range.  

Implementers and others who are interested in these details should read on. 

Other readers should skip to section 8.1.3 below. 
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The following algorithm can be used to analyze a location and identify the 
variable (i.e., field instance) and any indexers that may follow it (after allowing 
for the possible presence of a namespace qualifier as described in 9.3).  

Initialize an empty sequence that will contain the indexers. As described in 
"Fields" above, each indexer will either be an indexing field name or a tuple of 
indexing parameters.  

Do the appropriate case from among the following, iterating until a variable has 
been found: 

• If the location only has one term, interpret this name as a local variable, 
instance- level variable, global variable within the current scope and stop. 

• If the location is in the form N.M where M is an identifier, then evaluate N as 

an expression in the current scope. If the result is a compound value  (that 
is, of type structure), then push M onto the front of the indexer list. Then, 
take N as the location and iterate. However, if the result of evaluating N is 
an instance of a class, then interpret M as the name of an instance -level 
field associated with N’s value and stop.  

• If the location is in the form N(…) where (…) is a tuple expression, then 
evaluate N as an expression in the current scope. If the result is a 
compound value (in par ticular, of type Map, Set or Seq), then evaluate the 

tuple expression in the current scope and push it onto the front of the 
indexer list. Then, take N as the location and iterate. However, if the result 
of evaluating N in the current scope is not a compound value (for example, 

an instance of a class), an error occurs. 

The result of this process will be a variable  and a sequence of indexers . 

8.1.3 Partial and total updates  

Another way to understand the behavior of updates is in terms of partial and 
total updates. 

When an update statement directly sets the value of a variable (without the use 
of indexers), then a total update has occurred. When an update statement uses 
indexers, then a partial update has occurred. 

As mentioned above in section 8.1.1, all updates (including partial updates) 
must be consistent.  

8.2 Parallel  update blocks 

parallelUpdate ::= forall binders stm  

Multiple updates may be added to the current step using a forall statement  in 

the form forall binder1, binder2 , … stm . 
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The statement list stm is evaluated for each binding generated by the binders 
(see section 4.7). The updates that result from each evaluation of the statement 
block are added to the update set of the current step. 

No value is returned from a forall statement . 

Example 61 Parallel update 

var MySet as Set of Integer = {} 
 
const MyIntegers = {1, 2, 3, 4, 5} 
 
Main()  
  step 
    forall i in MyIntegers  
      require Size(MySet) = 0 
      add (i + 1) to MySet           // add each i + 1 to set 
  step 
    WriteLine(Size(MySet))           // prints 5 
  

Example 61 illustrates the parallel nature of a forall statement. The assertion 
require Size(MySet) = 0 checks that there are no elements in the set-
valued variable MySet in each iteration. The constraint is satisfied because all 

of the parallel updates are deferred until the subsequent sequential step. 

Thus, although iteration is present, the run consists of just two state transitions. 
In the initial state, the value of MySet is the empty set, {}. In the second state, 

MySet is {2, 3, 4, 5, 6}.  

8.3 Sequential blocks 

sequence ::= step  
step ::= step   [ label  ] [ iterator ] stm 
iterator ::= foreach binders  
   | for id "=" exp to exp  
   | while exp  
   | until ( exp | fixpoint ) 

Sequential blocks cause a new abstract state machine to run.  

The run of the machine is given as a sequence of discrete steps . 

Each step is performed in the lexical order it appears. If an iteration clause is 
given, the step repeats until a stopping condition is met.  

When the sequential block  has completed all of its steps, its cumulative update 

set is added to the update set of the current step (that is, the context in which 
the sequential block was invoked). In other words, it is as if all of the updates to 
variables produced by the sequential block are collapsed into a single block of 

proposed (possibly partial) updates in the enclosing scope. 
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The cumulative update set  is an aggregation of all update sets of the sequential 
machine, with updates in later steps overriding the updates of previous steps 
for any locations that are updated more than once during the run of the 
sequential block. Partial updates are treated consisten tly. 

Note to users  

Readers who are interested in the precise semantics of partial updates should 
refer to the Microsoft Research website.   

8.3.1 Effect of recursion on sequential steps 

If a sequential block  is invoked recursively (that is, as part of recursive method 
invocation), then a new abstract state machine is created for each level of 

recursion.  

8.3.2 Scope of constants and variables 

Any local field declarations found in steps of the sequential block are visible in 
all of succeeding steps. Each succeeding step clause establishes a new scope 
nested within the scope of the (lexically) previous step.  

8.3.3 Iterated steps 

Steps of a sequential block  may be iterated if they are introduced by foreach, 

while or until. 

The iterated steps proceed sequentially until their stopping condition has been 
met.  

In the case of until fixpoint, the stopping condition is met if no non -trivial 
updates have been made in the step. Updates that occur to variables declared 
in abstract state machines that are nested inside the fixed -point loop are not 

considered. An update is considered non-trivial if the new value is different from 
the old value.  

Each iterative step forms a distinct step of the abstract state machine 

introduced by evaluating the sequential block.  

Example 62 Sequential and parallel steps 

reachable of T (root as T, arcs as Set of (T, T)) as Set of T 
 var reachable = {root} 
 step until fixpoint            // sequential step     
   forall (l, r) in arcs        // parallel update 
     if l in reachable and r notin reachable then  
       add  r to reachable 
 step  
    return reachable 
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Main() 
  arcs = {(1, 2), (2, 3), (4, 5), (3, 1), (10, 9)} 
  WriteLine(reachable(3, arcs))        // prints {1, 2, 3} 
 

 

Example 62 gives an algorithm that calculates the reachable nodes o f a 

directed, possibly cyclic, graph. The local variable reachable  is a set of nodes 
that have been seen so far. The algorithm includes sequential aspects (iterating 
after each update of the nodes on the frontier) and concurrent aspects (visiting 

newly vis ible nodes). 

The Main()  method does not include steps. From its point of view, the program 
is entirely functional. It sees only the cumulative effect of the sequential steps 

that occurred in the subprogram that calculated the reachable nodes. 

8.4 The skip statement 

The skip statement (with syntax skip) is a null statement that performs no 
update and returns no value. 

Example 63 Skip statement 

Main() 
  var a = 0 
  step 
    if 2 > 1 then 
      a := 2 
    else  
      skip 
  step 
    WriteLine(a)                 // prints 2 
     

8.5 Processes 

[TBD]  

8.6 Agents 

[TBD]  

8.7 Exploration expressions 

exploration ::= explore exp 
   | search exp 
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The explore statement takes an expression which must return a value. The 
expression is evaluated as often as different choices (or combinations of 
choices) are possible during the execution of that expression. (In particular, if 
the expression is deterministic, then the expression is evaluation exactly once.) 

The result of the explore statement is a sequence containing one result value 
for each possible combination of choices. 

The search expression takes an expression, may or may not return a value. 

Like explore, the search expression tries different possible choices. But unlike 
explore, not all possibilities are explored. Search stops the search as soon as 
the expressions succeeded once.  

Example 64 Select expressions 

Choose() as (Integer,Integer) 
x = any i | i in {1..3} 
y = any i | i in {2..x} // note that for x=1, no possible 
                        // solution exists; thus x=1 will be 
                        // eliminated from the search by 
                        // “explore” and “search”. 
return (x,y) 

 
Main() 

WriteLine(explore Choose()) 
// prints a sequence containing the following pairs 
// (2,2), (3,2), (3,3) 
// in any order. 
 
WriteLine(search Choose()) 
// this prints exactly one pair. 
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AsmL provides a module system that allows names (see section 3.3 above) to 
be reused without conflict in different parts of the program. Each of these 
name-distinct modules is given by a namespace declaration. 

Note that the only effect of namespace declarations is the visibility of names 
(that is, whether simple names or qualified names must be used.) 

9.1 Unit of compilation (assembly) 

An AsmL program is given syntactically as an assembly. 

assembly   ::= [ namespaceOrDecl  ] 
namespaceOrDecl   ::= namespace  | declaration  

A program consists either of declarations, or of one or more namespaces  which 
in turn contain declarations . 

9.2 Namespaces 

namespace ::= [ attributes ] namespace name   
declaration ::= import | type | member 

A namespace declaration introduces a new scope (see section 3.5 above) for 

the names introduced by the declarations  nested with it. 

A namespace declaration consists of an optional namespace clause followed 
by directives and declarations. The namespace clause introduces a new scope 

(distinguished by a namespace identifier ). Directives affect how identifiers used 
within a given namespace will be recognized. Declarations are described in 
section 3 above. 

The namespace identifier may be a qualified name or a simple name. 

If the program does not include a namespace clause, then its declarations  are 
interpreted as having been preceded by “namespace Application”, and an 

error will occur if a namespace clause appears anywhere in the program. In 
other words, if the default namespace is used, then no user-provided 
namespace declarations are allowed.  

The order of namespace declarations  in the program does not matter. 
Namespaces are processed together without the need for forward declaration 
of elements referenced in the source before their definition.   

Example 65 Namespaces 

namespace Main 
 
import MyProg 
  
Main() 

9 Namespaces  
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 DoTopLevel() 
 
namespace MyProg 
 
DoTopLevel() 
  WriteLine("Hello, world!") 
 

9.3 Qualified names 

The qualified form of a name (see section 3.3 above) is visible within the scope 
of any namespace. The full name of the namespace is used as the identifier's 
prefix. 

(Names declared within a namespace may be used in unqualified form within 
that namespace. ) 

Example 66 Use of qualified names 

namespace MyProg.MySubprogram 
 
DoTopLevel() 
  WriteLine("Hello, world!") 
 
namespace Main 
  
Main() 
  MyProg.MySubprogram.DoTopLevel() 
 

9.4 Import directives 

import ::= import name [ "=" name ] 

An import directive  introduces names declared outside of a namespace 
declaration for use as simple names.  

The external identif ier provided by an import directive may be a namespace 

identifier of a namespace declaration  of the current program, or it may identify 
external module such as a library, whose definition is given by the external 
implementation environment . 

Example 67 Import Directives 

namespace Application 
import  System             // import directives 
import System.IO 
import SysIO = System.IO  // renaming 
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All of the names declared in the imported namespace become available as 
simple names within the namespace containing the directive. These are known 
as imported names.  

The global namespace Application has no special behavior with respect to 
the visibility  of names; it too must be imported if its names are to be used as 
simple names within the scope of another namespace. 

The import directive is not transitive; that is, names made visible inside a 
namespace N by virtue of t he import directive may not be used as simple 
names within a namespace that imports N.  

The qualified forms of imported names are available within the namespace that 
contains the import  directive. 

It is possible for a namespace to inc lude a nested declaration  of the same 
simple name as one of the imported names. However, each time such a name 
is used, the meaning must be clarified by explicit qualification; neither can be 
used as a simple name. In like manner, if two imported names are the same, 
then their qualified forms must always be used. 

Example 68 Explicit qualification required 

namespace N1.S1 
Foo() 
  WriteLine("N1.S1.Foo") 
 
namespace N2 
Foo() 
  WriteLine("N2.Foo") 
 
namespace Application 
import N1.S1 
import N2 
  
Foo() 
  WriteLine("Main.Foo") 
 
Main() 
  step Application.Foo()        // qualified even in local 
scope 
  step N1.S1.Foo() 
  step N2.Foo() 
  

Example 68 illustrates the fact that qualified names must be used whenever 
imported names produce the possibility of ambiguity.  
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9.4.1 Units of compilation 

The external identifiers used by the import directive may refer to namespaces 

that are not declared within the program but are provided by separate units of  
compilation , such as the built -in library.  

The division of a program into separate units of compilation  does not affect its 

meaning. Namespaces imported from separate units of compilation behave as 
if their declarations were provided as part of the program (except that external 
units of compilation may provide their own namespaces even if the program 
uses the default namespace).  

Implementation note 

A namespace declaration may not be split across multip le units of compilation.  
The program may not introduce new declarations into namespaces imported 
from the external environment. An error occurs if the program contains a 

namespace clause with the same name as an externally provided namespace.  

 

The namespace AsmL contains AsmL’s standard library of operations. AsmL is 
implicitly imported into every namespace.  

9.5 Linkage  

AsmL does not specify how it interacts with entities provided by the external 

environment.  

The representation of values by the language implementation is abstract .  

The mechanism by which AsmL invokes external, foreign routines that are 
introduced by import directives is not part of AsmL. In particular, if external 
routines must be invoked in a particular order, the steps of an abstract state 
machine must explicitly give this order. (By design, the order of evaluation of 

expressions within a step is not specified.) 

Except for the convention of the name Main to denote the program’s entry 
point, the way in which AsmL programs may be invoked by the outside 

environment is not part of AsmL.  

For example, AsmL does not have the concept of a thread of execution, since 
all computation within a step of an abstract state machine proceeds in parallel. 

An AsmL implementation is free to interact with the external operating 
environment in any way that preserves the semantics of the language, for 
example, by using as many processes and threads as it desires. Different 

implementations might make very different choices in this area. Thus, the 
language definition does not specify the mechanism for synchronizing AsmL 

objects with those provided by an external runtime environment.  
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Nonetheless , Microsoft's implementation of AsmL for Windows provides 
extensive integration with .NET. (This integration provides for synchronization 
between AsmL objects and the external environment, but this is not part of 
AsmL.) As a result, AsmL models may be invoked from test harnesses written 

in any .NET-compliant language such as Visual Basic.NET and Visual C#. The 
.NET integration is  described in separate documentation. 

It may come as a surprise that an implementation of a language focused on 

rigorous semantic modeling devotes so much energy on integration with an 
external operating environment. Our experience so far is that sophisticated 
integration with external operating environments is an essential part of making  

rigorous approaches relevant to software specification and testing in the  
commercial environment. As an example of this point, the .NET integration 
provided by Microsoft's AsmL compiler has been used by  test harnesses that 
check whether an implementation (written in a standard commercial 

programming language) agrees at runtime with its (mathematically precise) 
executable specification written in AsmL.  

9.6 Literate programming environment 

Another tenet of AsmL approach is smooth integration into existing software 
development processes. In practice, this important human consideration means 

that AsmL source will occur most frequently as "pseudo-code" inside of existing 
text-oriented documentation.  

In Microsoft, virtually all specification documents used for internal development 

projects are encoded as  binary files in Microsoft Word (".doc") format. 
Microsoft's AsmL toolset is capable of processing AsmL source directly from 
Word files (using a special AsmL "style" in the word processor). 

The result of this processing step is a text file structured as XML markup that 
conforms to the "AsmL.dtd" schema. This schema allows AsmL source to be 
interleaved with marked-up text and links to graphics that document the design.   

The benefit of XML mark-up is that it has a variety of processing options in the 
documentation work  flow, for example, as the basis of code review templates, 
test plans, reference material for customer support personnel and even as part 
of the product's external documentation.  Putting AsmL-based specifications at 
the center of it documentation process maximizes the benefit a development 

team will receive from its investment in precise, testable specifications. 
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This section lists features of AsmL that are specific to the .NET framework.  

Note to users  

These features should not be used for modeling, but only as a means of 
achieving interoperability.  In some cases they provide a way of bypassing 

AsmL update semantics. This may be desired when integrating AsmL models 
into the external environment (for example, connecting a model to a graphical 
user interface), but it makes the models less analyzable for the purposes of 

testing and establishing program semantics. 

10.1 Modifiers 

typeModifier  ::= extensibility | access 

access  ::= public | private | protected | internal 
extensibility  ::= abstract | sealed  

extendedMemberModifier ::= extensibility | access | primitive  

paramModifier  ::= primitive ref | primitive out  
    |  out | inout 
  

localVariableModifier ::= primitive 

Modifiers may be added to type declarations , members, parameters of methods 
and local variables . 

The modifiers virtual and override are used to provide methods that may be 
specialized by subtypes. The keyword virtual indicates that a default 
implementation is provided; however, a subtype may override this default. The 

keyword override  precedes a method that replaces the default given in s 
supertype. (The corresponding supertype method must be virtual or 
abstract. ) 

Override must be used whenever a method replacement occurs. If neither 
"virtual" nor "abstract" is specified in a method's declaration in the base 
type, then this method may not be specialized in a derived type. 

The extensibility modifiers (abstract and sealed) may be added to a type or 
member declaration to indicate whether additional definitions may (or in the 
case of abstract, must) be provided by subtypes. A sealed method (or any 

method of a sealed datatype) may not be extended.  

The modifier primitive may be applied to methods, method parameters and 
local variables. If provided, it indicates that AsmL update semantics do not 

apply. Instead, updates to primitive variables take effect with each update 
statement. 

10 .NET Extensions 
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AsmL's parameter modifiers allow for call- by-reference and output parameters. 

The modifiers for access ( public, private, protected and internal) have 

the same meaning as other CLS-compliant languages. The modif ier may limit 
the accessibility of a type's members. If unspecified, the type's visibility is 
internal.  

A member is accessible if it may be referred to by using a simple name, a 
qualified name or the dot (".") operator. Thus, if a member is not accessible in a 
given context, then there is no way to refer to it. 

The members of types declared as public are accessible in every scope. 

The members of types declared as private are accessible only within the 
lexical scope of the type's declaration. 

The members of types declared as protected are accessible only within the 
scope that contains the type declaration.  

The members of types declared as internal are accessible only within the 
current compilation unit.  

Private members are only visible in the current scope. They are present but not 

visible in subtypes. 

10.2 Attributes 

attributes ::= { attribute }  
attribute ::= "[" [ target  ] attributeConstructor  
    { "," attributeConstructor } "]" 
target ::= id ":" 
attributeConstructor ::= id | id "(" attributeExps ")" 
attributeExps::= [ exps ] [ namedAttrArgs ] 
namedAttrArgs ::= [ namedAttributeArg  { "," namedAttrArg } ] 
namedAttrArg ::= id "=" exp 

Attributes in AsmL are implemented using the conventions of the Common 

Language Specification (CLS). Refer to CLS documentation for their use.  

10.3 Delegates 

delegate ::= delegate id [ typeParams ]  signature 

Delegates in AsmL are implemented using the conventions of the Common 
Language Specification (CLS). Refer to CLS documentation for more 
information. 

Example 69 Delegate 

delegate IntFunc(i as Integer) as Integer 
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square(i as Integer) as Integer 
  return i * i   
 
structure Incrementer 
  by as Integer 
  Action(i as Integer) as Integer 
    return i + by 
 
Main() 
  a = new IntFunc(square) 
  b = new IntFunc(Incrementer(21).Action) 
  WriteLine(a(4))                // prints 16 
  WriteLine(b(21))               // prints 42 

10.4 Properties 

property ::= property ( name | me ) [ params ] as typeExp 
   ( setter [ getter ] | getter [ setter ] ) 
setter ::= set [ stm ] 

getter ::= get [ stm ] 

Properties in AsmL are implemented using the conventions of the Common 
Language Specification (CLS). Refer to CLS documentation for their use. 

10.5 Events 

event  ::= event name  as typeExp  
   ( adder [ remover ] | remover [ adder ] ) 
adder ::= add [ stm ] 
remover ::= remove [ stm ] 

Events in AsmL are implemented using the conventions of the Common 
Language Specification (CLS). Refer to CLS documentation for their use. 

10.6 Type integration 

The AsmL built- in types Boolean, Byte , Short, Integer, Long, Float, Double , 

Char and String  are extensions of built -in CLS types. This means that any 
.NET Framework method with the appropriate parameter type may be invoked 
on an AsmL value of these types.  

AsmL classes and structures are implemented as CLS classes. If an AsmL 
structure is prefixed by the keyword "primitive" then it is implemented as a 
CLS structure. (Note that AsmL structures are more general than CLS 

structures. In particular, an AsmL structure may be recursive.)  

CLS classes may be made available in AsmL by means of the "import" 
declaration.  Since the CLS type system does not distinguish null objects (as 
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does AsmL's), all parameters of class type T will be mapped to AsmL type T? 
when imported. 

10.7 Reflection 

AsmL allows access to the "type" object provided by the CLR reflection 

interface. The syntax is "type of T " where T is any type expression. 
Operations on this value are defined by the .NET Framework.  
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11.1 Set operations 

The AsmL library provides the following operations on the built- in type family 

Set: 

BigUnion(Set of Set of T) as Set of T 
BigIntersect(Set of Set of T) as Set of T 
ChooseSubset(Set of T) as Set of T 
ChooseNonemptySubset(Set of T) as Set of T 
Size(Set of T) as Integer    
operator `+`  (Set of T, Set of T) as Set of T  // union 
operator union (Set of T, Set of T) as Set of T // union 
operator `*`  (Set of T, Set of T) as Set of T  // intersection 
operator intersect (Set of T, Set of T) as Set of T   
operator `-`  (Set of T, Set of T) as Set of T  // difference 
operator `<`  (Set of T, Set of T) as Boolean  // proper subset 
operator subset 
operator `<=` (Set of T, Set of T) as Boolean  // subset or equal 
operator subseteq 
operator `>`  (Set of T, Set of T) as Boolean  // proper superset 
operator `>=` (Set of T, Set of T) as Boolean  // superset or eql 
operator in (T, Set of T) as Boolean            // membership tst 

 

AsmL provides "union",  "intersect"  and "subset" for set union, intersection 
and subset (or equal) as well as the equivalent "+", "*", "<" and "<=" operations. 
The operator "-" is set difference. 

11.2 Sequence operations 

The AsmL library provides the following operations on the built- in type family 
Seq: 

Head(Seq of T) as T    // the first element 
Tail(Seq of T) as Seq of T   // all but first 
Last(Seq of T) as T    // the last element 
Front(Seq of T) as Seq of T  // all but last 
 
Indices(Seq of T) as Set of Integer // {0..Size(s)-1} 
IndexRange(Seq of T) as Seq of Integer // [0..Size(s)-1]  
Values(Seq of T) as Set of T  // {i | i in s} 
Reverse(Seq of T) as Seq of T   // in backward order 
  
Length(Seq of T) as Integer  // number of entries 
Size(Seq of T) as Integer    // synonym of Length() 
 
Drop(Seq of T, Integer) as Seq of T   // all but first n elements 
Take(Seq of T, Integer) as Seq of T // first n elements 
Subseq(Seq of T, Integer, Integer) as Seq of T 
 
IndexOf(Seq of T, Seq of T) as Integer  // start of 1st subseq 
LastIndexOf(Seq of T, Seq of T) as Integer// start of last subseq 

11 Library 
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Zip(Seq of A, Seq of B) as Seq of (A, B)  // pairwise combination 
Unzip(Seq of (A, B)) as (Seq of A, Seq of B)  // pairwise split 
 
operator in (T, Seq of T) as Boolean // find element in seq 
operator + (Seq of T, Seq of T) as Seq of T   // concatenate 
 

The "-" operator for sequences is not provided.  

11.3 Map operations 

The AsmL library provides the following operations on the built- in type family 
Seq: 

Indices(Map of T to S) as Set of T  // domain 
Values(Map of T to S) as Set of S   // range 
Size(Map of T to S) as Integer 
 
operator union(Map of T to S, Map of T to S) as Map of T to S   
operator + (Map of T to S, Map of T to S) as Map of T to S    
operator in(T, Map of T to S) as Boolean  // checks domain 
 

11.4 String operations 

The AsmL2 library provides a String datatype that is compatible with the .NET 
Framework  System.String . However, in addition, future versions of the 

compiler will support all of the sequence operations, as if String  were a 
subtype of the AsmL type Seq of Char.  
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This section provides a summary of the AsmL grammar.  

13.1 Lexical level 

13.1.1 Identifiers 

id ::= initIdChar { idChar } { '’' }  
initIdChar ::= letter | ideographic | '@' | '_'  
idChar ::= letter | combining | ideographic   
   | digit | extender | underscore 
letter ::= // per Unicode section 4.5, letter,  
    excluding  combining characters 
combining ::= \u20DD | \u20DE | \u20DF | \u20E0 
digit ::= // per Unicode section 4.6, digit char 
ideographic ::= \u2FF0..\u2FFF  
extender ::= \u00B7 | \u02D0 | \u02D1 | \u0387 | \u0640  
   | \u0E46 | \u0EC6 | \u3005 | \u3031..\u3035  

   | \u309B..\u309D | \u309E | \u30FC..\u30FE  
   | \uFF70 | \uFF9E | \uFF9F  
underscore ::= \u005F | \uFF3F 

13.1.2 Literals 

literal ::= null | boolean  |  integer | real | string | char  

13.1.3 Boolean literals 

boolean ::=  true | false 

13.1.4 Integer literals  

integer ::= (decimal | hexadecimal) [ integerSuffix  ] 
decimal ::= digits 
hexadecimal ::= '0' ('x' | 'X') hexDigit { hexDigit } 
integerSuffix ::= 'l' | 'L' | 's' | 'S' | 'b' | 'B' 
digits ::= digit { digit } 
hexDigit ::= digit | 'a' .. 'f' | 'A' .. 'F' 

13.1.5 Literals for real numbers  

real ::= digits '.' digits [ exponent ] [ realSuffix ] 
exponent ::= ('e' | 'E') [ '+' | '-' ] digits 
realSuffix ::= 'f' | 'F' 

13  Grammar 
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13.1.6 String literals 

string ::= quote { strChar } quote 
strChar ::= readable  | whiteChar | sQuote | '\' esc 
readable ::= (see text)  
quote ::= '"' 
esc ::= 'b' | 'f' | 'n' | 't' | 'r' 
  | ('u' hexDigit  hexDigit hexDigit hexDigit) 

13.1.7 Character  literals 

char ::= sQuote (readable  | quote | '\' esc) sQuote  
sQuote ::= "'" 

13.1.8 Keywords 

-> _ eq initially operator step 

.. { error inout or structure 

:= | event interface otherwise subset 

<= } exists internal  out subseteq  

<> abstract explore intersect override sum  

>= add extends is primitive the 

( and fixpoint let private then 

)   any for lt procedure throw 

* as forall lte process to 

+ case foreach match property try 

, catch from max protected type 

- choose function me public union 

. class get merge ref unique 

/ const gt min remove until 

: constraint gte  mod require value 

; delegate holds mybase resulting values 

< do if namespace return var 

= else ifnone ne sealed  virtual 

> elseif implements new search where 

? ensure implies not set while 

[ enum import notin shared   

] enumerated in of skip   
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+= *=     

 

13.2 Unit of compilation (assembly) 

assembly ::= [ namespaceOrDecl ]  
namespaceOrDecl  ::= namespace | declaration 
namespace ::= [ attributes ] namespace name   
name ::= id { "." id } 
declaration ::= import | type | member 
import ::= import name [ "=" name ] 

13.3 Values, constructors and patterns 

13.3.1 Constructors 

constructor ::= literal 
   |  datatypeConstructor 
  |  collectionConstructor 

datatypeConstructor ::= [ new ] typeName [ "(" [ exps ] ")" ] 

collectionConstructor ::= tupleExp | setExp | seqExp | mapExp 
tupleExp ::= "("  exp "," exps  ")" 
setExp ::= "{" [ comprehension | exps | range ] "}" 
seqExp ::= "[" [ comprehension | exps | range ] "]" 
mapExp ::= "{" ( mapComprehension | mapExps | "->") "}" 
range ::= exp ".." exp 
comprehension ::= exp "|" binders  
mapComprehension ::= maplet "|" binders  
mapExps ::= maplet {"," maplet } 
maplet ::= exp "->" exp 

13.3.2 Patterns  

pat ::= "_"                        
   |  literal  
   |  id [ as typeExp ]  
   |  tuplePat  
   |  datatypePat  
   |  mapletPat 

tuplePat ::= "(" pats ")"  
datatypePat ::= typeName  [ "(" [ pats ] ")" ] 
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mapletPat ::= pat "->" pat 
 pats ::= pat { "," pat } 

13.3.3 Binders 

binders ::= binder {"," binder} 
binder ::= pat ( in | "=" ) exp [ where exp ]  

13.4 Type expressions 

typeExp ::= optionType  { or optionType } 
optionType ::= atomicType [ "?" ] 
atomicType ::= typeName | "(" typeExp { "," typeExp } ")" 
typeName ::= name [ typeArgs ]   
typeArgs        ::=  of  optionType   [ to optionType  ]  
            |  of "<" typeExp { "," typeExp } ">" 

13.5 Type declarations 

type ::= [ attributes ] { typeModifier } 
   ( class | structure  | interface |  
       enum  | delegate | constrainedType ) 

13.5.1 Type Parameters 

typeParams ::= of id [ to id ]  
   | of "<" typeParam  {"," typeParam } ">" 

typeParam ::= id [ typeRelations ] 

13.5.2 Type Relations 

typeRelations ::= extends typeExps [ implements typeExps ]  
  |   implements typeExps 

typeExps ::= typeExp { and typeExps } 

13.5.3 Interface  

interface ::= interface id [ typeParams ] [ typeRelations ] 
  [ declaration ] 
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13.5.4 Datatype declaration 

class ::= [ enumerated ] class id [ typeParams ] 
   [ typeRelations ]  
   [ variantOrDecl ] 
structure ::= structure id [ typeParams ] 
   [ typeRelations  ]  
   [ variantOrDecl ] 

variantOrDecl ::= declaration | variant  

variant ::= case id [ declaration ] 

13.5.5 Enumerations 

enum ::= enum id [ extends typeExp ] [ element ] 
element  ::= id [ "=" exp ] 

13.5.6 Constrained Types 

constrainedType ::= type id [ typeParams ] [ "=" valueExp ] 
valueExp ::= typeExp [ where exp ] 

13.6 Members 

member ::= [ attributes ] { memberModifier } 
   ( constant | variable | method  |  
     constraint | property  | event )  

memberModifier ::= shared | virtual | override 
    |  extendedMemberModifier 

13.6.1 Fields 

constant ::= [ const ] id  
      ( as typeExp [ "=" exp ] | "=" exp )  

variable ::= var id ( as typeExp ["=" exp ] | "=" exp ) 

13.6.2 Methods   

method ::= [ methodKind ] methodId [ typeParams ] 
   signature  [ stm ] 
methodKind ::= function | procedure  
methodId ::= name | operator ( binaryOp | unaryOp )  
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signature ::= params [ result ]  
result ::= as typeExp 
params ::= "(" [ param { "," param  } ] ")" 
param ::= [ attributes ] [ paramModifier ]  
   [ id as ] typeExp   

13.6.3 Constraints  

constraint ::= constraint [ label ] exp 
label ::= ( id | literal ) ":" 

13.7 Statements and expressions 

stm ::= local   
   |  assert 
  |  choice     
   |  return    
    |  operationalStm   
  |  exp  

exp ::= branchExp   
  |  exceptExp 
   |  quantifierExp  
   |  selectExp 
   |  binaryExp 
   | enum of type  
   | type of type 
   | do stm 
   |  exploration 
 
exps ::= exp { "," exp } 

13.7.1 Local fields 

local  ::= letBinder  
   |  { localVariableModifier } localVar 
letBinder ::= [ let ] pat "=" exp 
localVar  ::= ( var | initially ) id 
     ( as typeExp ["=" exp ] | "=" exp ) 
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13.7.2 Assertion statements 

assert ::= constraint | require  | ensure   
require ::= require [ label ] exp 
ensure ::= ensure [ label  ] exp 

13.7.3 Nondeterministic choice statements 

choice ::= choose [ unique ] binders  stm  

   [ ifnone stm ]  

13.7.4 Return statements 

return    ::= return exp 

13.7.5 Conditional expressions  

branchExp ::= ifExpr | matchExpr 
ifExpr ::= if exp [ then ] stm  
   { elseif exp [ then ] stm }  
   [ else stm ] 

matchExp ::= match exp case [ otherwise stm ] 
case ::= pat [ where exp ] ":" stm  

13.7.6 Try/catch expressions  

exceptExp  ::= try stm catch case  
            | throw exp  
   | error exp 

13.7.7 Quantifying exp ressions 

quantifierExp ::= forall binders  holds exp  
     |  exists [ unique ] binders    

13.7.8 Selection expressions 

selectExp  ::= selector comprehension [ifnone exp] 
selector ::= any | the | min | max | sum 
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13.7.9 Primary Expressions 

binaryExp ::= primaryExp { binaryOp primaryExp } 
primaryExp ::= unaryOp applyExp 
  |  applyExp [ ( is | as )  typeExp ] 
  |  resulting exp 

unaryOp ::= not |  "-" 
binaryOp ::= implies | and [ then ] | or [ else ]  
   | "*" | "/" | mod | "+" | "-"  

   | union | intersect | merge   
   | subset | subseteq | in | notin 
   | "=" | "<>" | "<" | ">" | "<=" | ">="  
   | eq  |  ne  | lt  | gt  | lte  | gte 

13.7.10 Apply expressions 

applyExp  ::= atomicExp { argList }  
   | mybase arglist { argList  } 
argList   ::= "(" [ exps ] ")" | "." id [ typeArgs ] } 

13.7.11 Atomic expression  

atomicExp   ::= constructor | me | value 
   | "(" exp ")"  
   | id [ typeArgs ] 

13.8 Runtime states 

operationalStm ::= update 
  |  parallelUpdate  
    |  sequence  
   |  skip 

13.8.1 Update statements 

update      ::= applyExp ( ":=" | "*=" | "+=" ) exp  
   | add exp to applyExp 
   | remove exp [ from applyExp ] 

13.8.2 Parallel  update blocks 

parallelUpdate ::= forall binders stm  
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13.8.3 Sequential blocks 

sequence ::= step  
step ::= step   [ label  ] [ iterator ] stm 
iterator ::= foreach binders  
   | for id "=" exp to exp  
   | while exp  
   | until ( exp | fixpoint ) 

13.8.4 Exploration expressions 

exploration ::= explore exp 
   | search exp 

13.9 .NET Compatibility  

13.9.1 Modifiers  

typeModifier  ::= extensibility | access 

access  ::= public | private | protected | internal 

extensibility  ::= abstract | sealed  

extendedMemberModifier ::= extensibility | access | primitive  

paramModifier  ::= primitive ref | primitive out  
    |  out | inout 
  

localVariableModifier ::= primitive 

13.9.2 Attributes  

attributes ::= { attribute }  
attribute ::= "[" [ target ] attributeConstructor  
    { "," attributeConstructor } "]" 
target ::= id ":" 
attributeConstructor ::= id | id "(" attributeExps ")" 
attributeExps::= [ exps ] [ namedAttrArgs ] 
namedAttrArgs ::= [ namedAttributeArg  { "," namedAttrArg } ] 
namedAttrArg ::= id "=" exp 

13.9.3 Delegates  

delegate ::= delegate id [ typeParams ]  signature 
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13.9.4 Properties 

property ::= property ( name | me ) [ params ] as typeExp 
   ( setter [ getter ] | getter [ setter ] ) 
setter ::= set [ stm ] 
getter ::= get [ stm ] 

13.9.5 Events 

event  ::= event name  as typeExp  
   ( adder [ remover ] | remover [ adder ] ) 
adder ::= add [ stm ] 
remover ::= remove [ stm ] 

 


