

AsmL: The Abstract State Machine Language

October 7 , 2002

Abstract

This document describes AsmL, a specification language based on abstract state machines.

Foundations of Software Engineering -- Microsoft Research
(c) Microsoft Corporation. All ri ghts reserved.

 i

1 Introduction. 1

1.1 Executable specifications 1

1.2 Other Approaches 2

1.3 Applications 3

1.4 Features 3

1.5 Design goals 4

1.6 Audience 4

1.7 Notation 5
1.7.1 Conventions for terminology 5
1.7.2 Syntax 5
1.7.3 Language version 5

1.8 Comments 6

2 Lexical Structure . 7

2.1 AsmL source 7

2.2 Handling of control characters 7

2.3 Tokens 7

2.4 Comments 8

2.5 Identifiers 8

2.6 Literals 9
2.6.1 Null 9
2.6.2 Boolean literals 9
2.6.3 Integer literals 9
2.6.4 Literals for real numbers 10
2.6.5 String literals 10
2.6.6 Character literals 11

2.7 Keywords 11

3 Declarations .. .13

3.1 Block structure 13

3.2 Kinds of declarations 15

3.3 The Main() method 16

3.4 Names 16

3.5 Declaration Scope 16
3.5.1 Unique declarations required per scope 16
3.5.2 Shadowing of identifiers 17

Contents

 ii

3.5.3 Order unimportant within a scope 17
3.5.4 Closure of scope 17

3.6 Continuation of declarations 18

4 Values, Constructors and Patterns. .19

4.1 Values 19

4.2 Constructors 19

4.3 Literal constructors 20

4.4 Datatype constructors 20
4.4.1 Instance constructors 20
4.4.2 Compound value constructors 21
4.4.3 Enum constructors 21

4.5 Collection constructors 21
4.5.1 Tuple construction 22
4.5.2 Set construction 22
4.5.3 Sequence construction 23
4.5.4 Map construction 23

4.6 Patterns 24
4.6.1 Universal patterns 25
4.6.2 Literal patterns 25
4.6.3 Identifier patterns 25
4.6.4 The type pattern 26
4.6.5 Tuple pattern 26
4.6.6 Datatype pattern 27
4.6.7 The maplet pattern 27

4.7 Binders 28
4.7.1 Parallel binding semantics 30
4.7.2 Order of bindings 30

5 Types. .31

5.1 Type expressions 31
5.1.1 Disjunctive types 32
5.1.2 Option types 32
5.1.3 Product types 32
5.1.4 Named types 33
5.1.5 Instantiated types 33

5.2 Operations on types 34

5.3 Built-in types 34

5.4 Subtypes 36

 iii

5.5 Type Declarations 36
5.5.1 User-declared subtypes 37
5.5.2 Interface declarations 37
5.5.3 Datatype declarations 38
5.5.4 Datatype variants 39
5.5.5 Enumerations 40
5.5.6 Constrained types 42
5.5.7 Constraints on type parameters 44

6 Members. .46

6.1 Fields 46
6.1.1 Type constraints on values of field instances 46
6.1.2 Constants 47
6.1.3 Variables 47
6.1.4 Initialization of field instances 47
6.1.5 Kinds of fields 48
6.1.6 Indexing field names 49
6.1.7 Indexing parameters 49

6.2 Methods 50
6.2.1 Kinds of methods 51
6.2.2 Functions and procedures 52
6.2.3 Operators 52
6.2.4 Conversion methods 52
6.2.5 Method parameters 53
6.2.6 Static method selection 53
6.2.7 Dynamic method selection 56
6.2.8 Return values 56
6.2.9 Recursive methods 57
6.2.10 Type-parameterized, generic methods 57
6.2.11 Constructor methods 57
6.2.12 Disambiguation of method names 58

6.3 Constraints 59

7 Statements and Expressions .60

7.1 Statement blocks 60

7.2 Local fields 62

7.3 Assertion statements 63

7.4 Nondeterministic choice statements 65

7.5 Return statements 65

7.6 Try/catch statements 68

7.7 Conditional expressions 66

 iv

7.7.1 If-then-else expressions 66
7.7.2 Match expressions 66
7.7.3 Defaults for conditionals 67

7.8 Quantifying expressions 68

7.9 Selection expressions 70

7.10 Primary Expressions 71
7.10.1 Logical operations 72
7.10.2 Type query expressions 72
7.10.3 Type coercion expressions 72

7.11 Apply expressions 73

7.12 Atomic expression 74

7.13 Enumerated types 75

7.14 The do expression 77

8 State Operations. .78

8.1 Update statements 78
8.1.1 Consistency of update statements 80
8.1.2 Locations 80
8.1.3 Partial and total updates 81

8.2 Parallel update blocks 81

8.3 Sequential blocks 82
8.3.1 Effect of recursion on sequential steps 83
8.3.2 Scope of constants and variables 83
8.3.3 Iterated steps 83

8.4 The skip statement 84

8.5 Processes 84

8.6 Agents 84

8.7 Exploration expressions 84

9 Namespaces .. .86

9.1 Unit of compilation (assembly) 86

9.2 Namespaces 86

9.3 Qualified names 87

9.4 Import directives 87
9.4.1 Units of compilation 89

9.5 Linkage 89

 v

9.6 Literate programming environment 90

10 .NET Extensions .91

10.1 Modifiers 91

10.2 Attributes 92

10.3 Delegates 92

10.4 Properties 93

10.5 Events 93

10.6 Type integration 93

11 Library .95

11.1 Set operations 95

11.2 Sequence operations 95

11.3 Map operations 96

11.4 String operations 96

12 List of Examples .97

13 Grammar. .99

13.1 Lexical level 99
13.1.1 Identifiers 99
13.1.2 Literals 99
13.1.3 Boolean literals 99
13.1.4 Integer literals 99
13.1.5 Literals for real numbers 99
13.1.6 String literals 100
13.1.7 Character literals 100
13.1.8 Keywords 100

13.2 Unit of compilation (assembly) 101

13.3 Values, constructors and patterns 101
13.3.1 Constructors 101
13.3.2 Patterns 101
13.3.3 Binders 102

13.4 Type expressions 102

13.5 Type declarations 102
13.5.1 Type Parameters 102
13.5.2 Type Relations 102
13.5.3 Interface 102

 v i

13.5.4 Datatype declaration 103
13.5.5 Enumerations 103
13.5.6 Constrained Types 103

13.6 Members 103
13.6.1 Fields 103
13.6.2 Methods 103
13.6.3 Constraints 104

13.7 Statements and expressions 104
13.7.1 Local fields 104
13.7.2 Assertion statements 105
13.7.3 Nondeterministic choice statements 105
13.7.4 Return statements 105
13.7.5 Try/catch statements 105
13.7.6 Conditional expressions 105
13.7.7 Quantifying expressions 105
13.7.8 Selection expressions 105
13.7.9 Primary Expressions 106
13.7.10 Apply expressions 106
13.7.11 Atomic expression 106

13.8 Runtime states 106
13.8.1 Update statements 106
13.8.2 Parallel update blocks 106
13.8.3 Sequential blocks 107
13.8.4 Exploration expressions 107

13.9 .NET Compatibility 107
13.9.1 Modifiers 107
13.9.2 Attributes 107
13.9.3 Delegates 107
13.9.4 Properties 108
13.9.5 Events 108

 Fehler! Formatvorlage nicht definiert. 1

1.1 Executable specifications

AsmL is a software specification language based on abstract state machines. It

is used for creating human -readable, machine-executable models of a system’s
operation in a way that is minimal and complete with respect to any given user-
defined level of abstraction. We call specifications written in AsmL executable
specifications.

Like traditional specifications, executable specifications are descriptions of how
software components work. Unlike traditional specifications, executable
specifications have a single, unambiguous meaning. This meaning comes in
the form of an abstract state machine (ASM), a mathematical model of the

system’s evolving, runtime state.

AsmL specifications may be run as a program, for instance, to simulate how a
particular system will behave or to check the behavior of an implementation

against its specification. However, unlike traditional programs, executable
specifications are intended to be minimal. In other words, although they are
faithful in describing, without omission, everything that is part of the chosen

level of detail, they are equally faithful in leaving unspecified what is outside
that level of detail.

Thus, unlike programs, executable specifications restrict themselves to the

constraints and behavior that all correct implementations of the system will
have in common. In other words, an executable specification must be as clear
about the freedom given to correct implementations of the system it describes
as it is about constraints.

For example, executable specifications do not constrain the order of operations
unless it is significant, whereas current-day programs realize a sequential order
of operation as an implementation decision.

This can be seen with an example:

Example 1 In -place sorting

var A = [3, 10, 5, 7, 1]
indices = {0, 1, 2, 3, 4}

Main()
 step until fixpoint
 choose i in indices, j in indices
 where i < j and A(i) > A(j)
 A(i) := A(j)
 A(j) := A(i)
 step
 WriteLine(A) // prints [1, 3, 5, 7, 10]

1 Introduction

 Fehler! Formatvorlage nicht definiert. 2

This executable specification uses an abstract state machine for in-place
sorting via a single -swap algorithm.

The machine performs sequential steps that swap the values of A whose
elements are denoted by indices i and j such that i is less than j and the
values A(i) and A(j) are out of order. It runs until no further updates are
possible, that is, until the sequence is in order. As a final step, it prints the
sorted sequence. The state of the machine at each step is entirely

characterized by the value of the sequence A in that step .

The specification is minimal. The first point is that choose expression does not
say how the two indices are selected, only that whatever indices are chosen

must be distinct indices of out-of-order elements. Hence, many sorting
algorithms, including quicksort and bubble sort, would be consistent with what
we have specified.

Also, our example does not say how the swap operation happens. The values
of the variables change as an atomic transaction. This leaves each
implementation to decide how to perform the sequential swap, for instance, with

an intervening copy to a temporary location.

1.2 Other Approaches

There are several other mathematical approaches besides abstract state
machines that provide an operational model of software systems. An
operational model is one that describes a system in terms of a mathematical

machine. The most famous of these is the Turing machine , which can precisely
represent any computable function as the evolving state of a machine that
reads and writes binary digits to a serial memory. The difficulty, of course, is
that the Turing machine’s representation does not correspond to any

commonsense view of the system that might aid human understanding.

ASMs, on the other hand, employ the user’s view of the system as the
vocabulary of the abstract machine that models the computation. As a

consequence, with AsmL, one can describe the system’s state in terms of
variables and operations that make sense to the user. Thus, we say that an
executable specification is a faithful model that step-for-step simulates a
system at a given level of detail.

There are also a number of approaches that give an algebraic model of
software systems, in contrast to an operational model. Algebraic models use
algebraic equations that represent static constraints and definitions (that is, the
rules relating the input and the output of a system).

AsmL embraces the formalism of algebraic specification but extends it (and this
is crucial) with the dynamic properties of ASMs. Thus, AsmL can be used to
build algebraic models of a system but is not limited to static definitions and

correctness constraints. Instead, the symbolic vocabulary that characterizes an

 Fehler! Formatvorlage nicht definiert. 3

abstract state machine may include dynamic state variables whose values
evolve during the run.

AsmL’s focus is entirely on faithfully describing discrete systems in terms of
evolving state. Thus, AsmL does not have an associated methodology for
theorem proving or model checking, although executable specifications are well
suited as input for many types of static analysis such as these. (An executable
specification written in AsmL will typically have a static analysis search space

that is several orders of magnitude smaller than an equivalent implementation
written in a standard programming language.)

1.3 Applications

Executable specifications written in AsmL have some remarkable properties.

First, AsmL models can be run as simulations of the system they describe. This
means the development team can, even before any code has been written,
explore the proposed design and anticipate how different features will interact.
However an AsmL model is more than a prototype or reference implementation ,

since it is a complete representation of a chosen level of design detail. In other
words, a properly constructed AsmL model will say what each correct
implementation must do, what it may do and what it must not do.

Second, AsmL models can be run in parallel with the implementation of the
systems they describe to check that the specifications and the implementations
agree. Not only does this verify the implementation, but it also ensures that the

specification is up-to-date.

Finally, AsmL provides the rigor needed for algorithmic test case generation
and, in many cases, for model checking and verification.

1.4 Features

AsmL is intended to be the standard ASM-based specification language for the

growing worldwide ASM community, including software professionals working
on large, real-world projects.

AsmL includes a state-of-the-art type system with extensive support for type

parameterization and type inference. Using clear semantics, it provides a
unified view of classes used for object-oriented programming, in addition to
structured data types . It supports mathematical set operations—such as

comprehension and quantification—that are useful for writing high- level
specifications.

Along with taking advantage of the most sophisticated advances in language

design, it was important that the language be practical, accessible, and easily
integrated with the tools currently used by the development community. To this
end, AsmL implementations can target real-world system environments, such
as Microsoft’s COM and .NET platforms. Its syntax was designed to read as

 Fehler! Formatvorlage nicht definiert. 4

much like pseudo-code as possible, making it understandable to members of
the development team other than programmers. Developers, analysts, testers,
managers, and documentation writers should be able to read an executable
specification with only a modest amount of training.

As a specification language, we wanted AsmL to incorporate features that
would make modeling actual systems as straightforward as possible. The
language includes fundamental support for nondeterministic behavior.

AsmL is also capable of describing the evolving state of asynchronous,
concurrent systems. It has been successfully applied to both protocols and
component design.

1.5 Design goals

 AsmL is designed to achieve the following goals:

• AsmL should be a practical specification language that scales to the needs

of the largest commercial software projects, including operating systems
and distributed software components.

• AsmL should be faithful to the spirit and clear semantics of abstract state

machines.

• Executable specifications written in AsmL should look like pseudocode and
be readable by anyone familiar with at least one other computer language.

• AsmL should be small, self -consistent and easy to explain.

• AsmL should not require an overly complex implementation.

The design was an engineering challenge. Focusing on these goals may have
ruled out some language features that were more powerful, elegant, flexible
and comfortable to mathematicians, language specialists and the existing ASM

community in favor of syntax and features that met the needs of users from the
world of commercial software development. (For example, array indices begin
with zero in AsmL following the conventions of commercial programming
languages, rather than with one as is the standard mathematical practice.)

We leave it to the reader to decide how successfully these design goals have
been met.

1.6 Audience

We intend this reference manual to be useful to experienced software

professionals and to language implementers. (Notes to language implementers
are called out separately from the body text.) We have attempted to keep the
descriptions precise while providing a generous number of examples.

Nonetheless, this manual is not a tutorial of abstract state machines nor is it a
guide for applying executable specifications to software projects. Neither is it a

 Fehler! Formatvorlage nicht definiert. 5

primer on modern programming language design. For these purposes the
reader should look elsewhere, including the AsmL Tutorial. We also caution the
reader against overlooking the importance of training and a certain amount of
apprenticeship when first attempting to use AsmL on a commercial project.

1.7 Notation

1.7.1 Conventions for terminology

We use a special text color for terminology that is defined in the document.
Additionally, terms are italicized they are defined. For example, we define
terminology as a phrase with special meaning. Terminology may appear
anywhere in the document.

Terminology is given special text color only once per paragraph. Subsequent
occurrences of identical terminology within a paragraph are not given special
formatting.

In the index found at the end of this document, the page number of each
definition of new terminology is given in bold font.

1.7.2 Syntax

We use a Backus-Naur formalism to give the syntax of AsmL.

Terminal symbols are given in any of four forms: 1) in fixed-width bold, 2) by
strings (for example, “=”), 3) by characters in single quotes or 4) as Unicode
characters in hexadecimal form (for example, \u00A0).

Non-terminals are set in roman italics and are defined using the symbol “::=“.

Alternatives are separated by a vertical bar, ‘|’. Ranges of characters are

given by two adjacent periods, for example, 'a'..'z' indicates any of the
twenty-six lowercase Latin characters.

Parentheses “(” … “)” are used for grouping.

Curly braces in the form “{” … “}” are used to indicate zero or more repetitions.

Square braces in the form “[” … “]” indicate that the enclosed expression is
optional.

Underlining indicates one or more occurrences of a production using identical
indentation on a new line as separation. This convention is explained more fully
in section 3.1 below.

1.7.3 Language version

This manual documents AsmL2.

 Fehler! Formatvorlage nicht definiert. 6

1.8 Comments

AsmL is available for download at

http://research.microsoft.com/foundations/asml.

Comments about the AsmL language or implementation should be sent to
asml@microsoft.com.

Comments related to this manual can also be sent to the editor of the reference
manual, using either v -colinc@microsoft.com or colinc@modeled-
computation.com.

 Fehler! Formatvorlage nicht definiert. 7

This section describes the lexical structure of AsmL text.

2.1 AsmL source

AsmL source is a sequence of characters (its text) encoded using the Unicode
character set.

2.2 Handling of control characters

Except for the form feed, line feed and carriage return characters, AsmL rejects
all control characters in the range \u0000 through \u001F that may appear in
the text of a program by issuing an error message. In particular, AsmL source
may not contain the horizontal tab character (\u0009).

Carriage-return characters (\u000D) and form-feed characters (\u000C) are
interpreted as new -line characters (\u000A) . However, any carriage-return
character that immediately precedes a new-line character is ignored (this

affects only the line numbering of diagnostic error messages).

After adjusting for control characters , AsmL interprets the text of a program as
a sequence of source lines. Each source line is a sequence of characters that

ends with a new-line character . AsmL will implicitly terminate the text of a
source with a new-line character if one is not already present.

2.3 Tokens

The text of an AsmL program is scanned as a sequence of tokens, possibly
separated by white space and comments. Tokens are the terminal symbols of

the AsmL grammar.

A token is a case-sensitive sequence of characters. There are three kinds of
tokens: identifiers, literals and keywords. (These are described in the sections

that follow.) Identifiers, literals and keywords have their own grammatical
context and are not interchangeable. For example, a keyword may not be used
in a context that expects a literal or identifier.

White space is required to separate tokens that begin or end with letter or digit
characters; otherwise, white space is optional. For example , graphemes (that
is, tokens like ">=" that do not contain letters) do not require white space
separation.

White space is a sequence of one or more white space characters . A white
space character is either the space (\u0020) or the new-line character (LF, or
\u000A) .

AsmL’s lexical analysis uses the "longest prefix" rule. At each point, the longest
possible character string satisfying the token production is read. So, although
“class” is a keyword, “classes” is not. Similarly, the string ">=" would be

2 Lexical Structure

 Fehler! Formatvorlage nicht definiert. 8

interpreted as the token for greater-than-or-equals instead of two tokens ">"
and "=."

2.4 Comments

Comments are sequences of characters that are ignored by the parser when

scanning AsmL text into a sequence of tokens. There are two forms used for
comments.

A line comment begins with two forward slash characters ("//") and continues to

the end of the source line.

A nested comment begins with the character sequence "/*" and ends with the
character sequence "*/". Nested comments may span multiple source lines.

The character sequences "/*" and "//" have no special significance within
comments. The sequence "*/" has no significance within a line comment.

2.5 Identifiers

id ::= initIdChar { idChar } { '’' }
initIdChar ::= letter | ideographic | '@' | '_'
idChar ::= letter | combining | ideographic
 | digit | extender | underscore
letter ::= // per Unicode section 4.5, letter,
 excluding combining characters
combining ::= \u20DD | \u20DE | \u20DF | \u20E0
digit ::= // per Unicode section 4.6, digit char
ideographic ::= \u2FF0..\u2FFF
extender ::= \u00B7 | \u02D0 | \u02D1 | \u0387 | \u0640

 | \u0E46 | \u0EC6 | \u3005 | \u3031..\u3035
 | \u309B..\u309D | \u309E | \u30FC..\u30FE
 | \uFF70 | \uFF9E | \uFF9F
underscore ::= \u005F | \uFF3F

Identifier tokens are user-defined symbolic names.

The form used for AsmL identifiers is consistent with the conventions used for
Microsoft Common Language Specification [CLS] with two exceptions. The first
is that, unlike the CLS, AsmL permits the underscore character ('_', or \u005F)
and the "Commercial At" character ('@', or \u0040) to be used as initial

characters of an identifier. The second is that it is permissible for an AsmL
identifier to be suffixed by one or more apostrophe characters (\u0027).

The letter production is also equivalent to the Microsoft .NET Frameworks

library function System.Char.IsLetter(), if the characters \u20DD, \u20DE,
\u20DF and \u20E0 are excluded.

 Fehler! Formatvorlage nicht definiert. 9

The digit production is also equivalent to the Microsoft .NET Framework library
function System.Char.IsDigit() .

Note to users

We recommend that users adopt as a coding convention that identifiers within

the scope of an enclosing statement block, such as the names of local
variables, be placed in "camel" case. Camel case means that lowercase letters
are used, except that secondary words in a compound name are capitalized.

Examples are "begin" and "beginScope." Camel case should also be used as
the names of fields defined within datatypes. The identifiers of global fields,
types and methods should be capitalized.

2.6 Literals

literal ::= null | boolean | integer | real | string | char

Literals are tokens that denote values of certain built -in types. See section 4

below for more information about values and section 5.3 for more information
about AsmL's built- in types.

2.6.1 Null

The literal null denotes a value that is distinct from all other values. The value
null typically designates a default value.

The value null is of type Null.

2.6.2 Boolean literals

boolean ::= true | false

The Boolean literals true and false are the values of the Boolean type.

2.6.3 Integer literals

integer ::= (decimal | hexadecimal) [integerSuffix]
decimal ::= digits
hexadecimal ::= '0' ('x' | 'X') hexDigit { hexDigit }
integerSuffix ::= 'l' | 'L' | 's' | 'S' | 'b' | 'B'
digits ::= digit { digit }
hexDigit ::= digit | 'a' .. 'f' | 'A' .. 'F'

Integer literals may be given in either decimal notation or hexadecimal notation.

Decimal notation is a sequence of one or more digits.

 Fehler! Formatvorlage nicht definiert. 10

Hexadecimal notation is a sequence of one or more hexadecimal digits prefixed
by the characters '0x' or '0X'. A hexadecimal digit is a (decimal) digit or one
of the characters 'a' through 'f' or 'A' through 'F' (corresponding to numbers
whose decimal representations are 10 through 15 respectively).

The distinction between decimal and hexadecimal is only a matter of notation.
In other words, the literals 31 and 0x1F are two ways to denote the same value.

The type of an integer literal is Integer , unless the optional suffix b, s or l (or,
in capital letters, B, S, L) is specified, in which case the literal is of type Byte,
Short or Long, respectively.

Integer literals with differing suffixes denote distinct values. In other words, the
domains of the various built -in types of integers are disjoint.

2.6.4 Literals for real numbers

real ::= digits '.' digits [exponent] [realSuffix]
exponent ::= ('e' | 'E') ['+' | '-'] digits
realSuffix ::= 'f' | 'F'

A literal for a real number includes one or more digits to the left and to the right
of a decimal point, followed an optional exponent. If provided, the exponent
consists of the letter 'E' or 'e', an optional sign ('+' or '-') a nd a sequence
of digits. The exponent indicates a power of ten by which the numeric value

should be multiplied.

The type given by a real-number literal is Double , unless the literal has the
suffix F or f, in which case the value is of type Float.

Numeric literals, whether real numbers or integers, that fall outside the domain
of their type generate an error.

Literals suffixed by f are distinct from those not so suffixed. In other words, the
domains of the types Double and Float are disjoint.

2.6.5 String literals

string ::= quote { strChar } quote
strChar ::= readable | whiteChar | sQuote | '\' esc
readable ::= (see text below)
quote ::= '"'
esc ::= 'b' | 'f' | 'n' | 't' | 'r'
 | ('u' hexDigit hexDigit hexDigit hexDigit)

A string litera l contains between its delimiting double quotes zero or more
readable characters, single quote characters (\u0027), white space characters

and escaped characters .

 Fehler! Formatvorlage nicht definiert. 11

In AsmL readable characters include all letter characters, digits , the space
character (\u0020) as well as all of the characters used in AsmL for keywords.
The character '\' (\u005C) is not a readable character. White space
characters other than the space character are not readable characters. The

single quote and double quote characters are not readable characters.

An escaped character consists of a backslash character “\” (\u005c) followed
by an escape code.

Escape codes may denote the control characters "backspace" (\b), "form feed"
(\f), "new line" (\n) and "horizontal tab" (\t).

Escape codes may also be in numeric form to denote a character by its
Unicode encoding. The hexadecimal escape code begins with a “u” and is
followed by four hexadecimal digits, for example “\u0022”.

The sequences of characters “ /*”, “*/” and “ //” have no special significance
within a string literal.

The value denoted by a string literal is of type String.

2.6.6 Character literals

char ::= sQuote (readable | quote | '\' esc) sQuote
sQuote ::= "'"

Character literals denote values of the built -in type Char. Between its delimiting
single quotes, a character literal contains a readable character, a double quote
character (\u0022) or an escaped character .

2.7 Keywords

AsmL recognizes the following tokens as keywords.

-> { error interface out sum

.. | event internal override the

:= } exists intersect primitive then

<= abstract explore is private throw

<> add extends let procedure to

>= and fixpoint lt process try

(any for lte property type

) as forall match protected union

* case foreach max public unique

+ catch from me ref until

, choose function merge remove value

 Fehler! Formatvorlage nicht definiert. 12

- class get min require var

. const gt mod resulting virtual

/ constraint gte mybase return where

: delegate holds namespace sealed while

< do if ne search

= else ifnone new set

> elseif implements not shared

? ensure implies notin skip

[enum import of step

] enumerated in operator structure

+= *= initially or subset

_ eq inout otherwise subseteq

Alternatives eq, ne, lt, gt, le and ge may be substituted for "=", "<>", "<",
"<=",">" and ">=", respectively. (This makes it easier for AsmL source code to
be integrated into XML documents in some situations .)

The keywords the, min, max and sum used to introduce a select expression
(see section 7.9 below) may also be used as identifier tokens.

 Fehler! Formatvorlage nicht definiert. 13

An AsmL program consists of declarations that establish the program's
vocabulary , a fixed set of symbols with defined operational meaning. This
section describes how to interpret the token sequence described in the
previous section as an AsmL program.

Each declaration establis hes the meaning of an identifier (called a declared
name) within its scope. The definition of a declared name is static. In other
words, the meaning of a program's vocabulary does not change during the run

of the program.

Note to users

Declarations in AsmL have rigorous mathematical semantics . This means that

there is only one interpretation of a program written in AsmL and that this
interpretation can be directly and completely expressed in mathematical terms .

For example, declaring a name as a Set in AsmL means that the name denotes

an abstract entity with the same properties as a finite set in mathematical set
theory. Even "state-changing" operations such as updating the value of a
variable can be precisely understood in terms of operations on an abstract
mathematical machine.

It is not necessary to understand AsmL's mathematical foundation in order to
use or implement the language. In fact one of AsmL's primary design
motivations is to make clear mathematical semantics practical in the world of

commercial software development without requiring software professionals to
become mathematicians .

As a consequence, t his document does not give the full semantics of AsmL,

although we do add "notes to users" throughout the text to clarify semantic
issues that could be confusing.

Declarations may be nested, and the order of declarations in a program does
not matter.

Note that AsmL also provides namespaces to govern the visibility of declared

names. Namespaces are not required, and so we will defer them until section 8
below.

3.1 Block structure

AsmL declarations sometimes use layout (that is, indentation and new lines) to
indicate block structure. In other words, AsmL interprets a new line and

indentation as delimiting certain lists of entities.

In the grammar that follows, an underlined term represents a list of that term,
and the parser will recognize indented layout as a delimiting token between

items in the list. For instance, “stm ” would be an indented list of “stm ” terms.

3 Declarations

 Fehler! Formatvorlage nicht definiert. 14

The first item in the list must be indented (possibly on a new line) with respect
to the first token of the production in which the list occurs. For this purpose, the
definition of a named term is the containing production.

All items that follow the first must start on a new line with the same offset as the
first list item (called block offset of the list). A character’s offset is the number of
characters in the line that precede it within its source line. Comments are
significant when calculating a character's offset on a source line.

Lines consisting entirely of white space and comments are ignored for the
purposes of indented layout.

The end of the list is not delimited. The list terminates when the enclosing
production continues.

Compatibility Note

Previous version of AsmL allowed semicolons as an alternative way to separate

items in a list. The use of semicolons as separators has been removed from
AsmL.

Example 2 Indentation as block structure

/*
 * enum ::= "enum" id ["extends" typeExp] [element]
 * element ::= id ["=" exp]
 */

enum Color1
 Red
 Green
 Blue

enum Color2 { Orange Yellow Violet }

Note the first token of the production is "enum", so every element has to be
indented with respect to the column where "enum" appears. Each element must
be identically indented. Indentation is not required for the second enum
because curly braces have been used to indicate the extent of the list.

Example 3 Indentation as block structure

/*
 * ifExpr ::= if exp [then] stm
 * { elseif exp [then] stm }
 * [else stm]
 */

Main()
 var x as Integer = 1

 Fehler! Formatvorlage nicht definiert. 15

 var y as Integer = 2
 let flag = if x < y then x else y
 let flag2 = if x > y then
 x
 else
 y
 step
 if x > y then x := x + 1
 y := x + 2
 else
 x := 33
 step
 WriteLine(x)

Example 3 shows how indentation can be used for blocks of expressions. Note

that the indentation of the last list is relative to if (and not else), since if
begins the production in which the stm was given in the syntax.

For namespaces the offside rule also treats each entity as a list entity. For

namespaces the first token of a compilation unit determines the block offset.

3.2 Kinds of declarations

declaration ::= import | type | member

Declarations are import declarations, type declarations or member declarations.

Type declarations (see section 5.3) provide the named structures familiar to
object-oriented programmers, such as interfaces and classes . Type

declarations define new named types or if type parameters are given new type
families .

Member declarations (see section 6 below) provide fields and methods.

Member declarations may be nested inside of a type declaration or appear
globally , outside of any type declaration.

Example 4 Declarations

const max_Integer = 10 // global member decl

class Cell // type declaration
 var cont as Integer // member decl nested inside type decl

Main() // global member decl
 WriteLine(max_Integer)

 Fehler! Formatvorlage nicht definiert. 16

3.3 The Main() method

The operational meaning of a program is given by its Main() method. In other

words, Main() is the top-level entry point, like main() in the "C" programming
language.

3.4 Names

name ::= { id "." } id

Names used in the program consist of one or more identifiers (see 2.5 above)
separated by a dot ("."). They may be either simple or qualified.

Simple names do not contain a dot (" ."). Qualified names are those that include

a dot (".").

For example, Pressure_2 and Control.Common.Pressure_2 are well-formed
names. The form .Pressure_2 is not a name, since the dot (".") must be

preceded by an identifier.

Note that qualified names are defined in AsmL at the token level, not the lexical
level. This means that white space and comments may appear in between the

tokens that constitute a qualified name.

We use the terms name and identifier interchangeably throughout the rest of
this reference. The grammar makes it clear when a qualified name may be

used instead of a simple name.

3.5 Declaration Scope

The scope of a declared name is the region of the program text within which the
declared name has meaning.

Unless otherwise noted, the scope of a declared name N is the enclosing
scope, that is, the region given by the declaration that contains N’s declaration
in nested form. If N’s declaration is not nested within another declaration, it has
global scope (that is, it is defined within the namespace Main as we will see

later in section 9.2). A name with global scope is called a global name .

3.5.1 Unique declarations required per scope

All declared names must be distinct within their scope. For example, an error
occurs if a type declaration and a field declaration introduce the same name in
the same scope. It is also not allowed to give a field the same name as a

method.

There are exceptions to this rule: ov erloaded method names and continued
declarations.

 Fehler! Formatvorlage nicht definiert. 17

Overloaded methods are distinguished by their argument types as well as their
names. It is therefore possible that two distinct methods will have the same
name. See section 6.2.6 below.

Continued declarations allow a single declaration to be split into sections. For
example, a class declaration may introduce methods in lexically separate
blocks. See section 3.6 below.

Implementation Note

The AsmL currently does not check prevent a field and a method from having
identical names. This will be corrected in a subsequent release.

3.5.2 Shadowing of identifiers

Names introduced either by declarations nested within a type declaration
(assuming the shared keyword is absent) or by statements (see section 7.2
below) are called locally declared names.

Locally declared names hide global names. For example, names introduced
inside of methods for local variables may be the same as global variables . In
this case, any references to the name are interpreted using the local definition.

Note that the shadowed names are still available by means of qualified names.
See section 9.3 below for the use of qualified names.

Local names are not allowed to shadow other local names, regardless of

nesting level of their respective scopes.

Shadowing the names of types is not allowed.

3.5.3 Order unimportant within a scope

The order of declarations in a scope is of no significance. However, there are

two exceptions.

First, t he order that field declarations occur in class or structure declaration
determines the order of the p arameters of the default construction expression

for that datatype.

Second, the order of elements in an enumeration determines the default
numeric values associated with those elements. See section 5.5.5 below.

3.5.4 Closure of scope

Every scope in a program must be closed. In other words, every simple name

referenced within a scope must be a declared name visible in that scope.

 Fehler! Formatvorlage nicht definiert. 18

3.6 Continuation of declarations

AsmL allows a type declaration, namespace or method to be divided into

distinct lexical blocks.

In general, a declaration is sim ply the union of separate lexical blocks. In all
cases, the interpretation is "union of constraint." That is, the information

provided by all declarations of a given name within the same scope must not
contradict.

Implementation note

When a method declaration is continued, only one occurrence of the method
may have a body. This is a restriction may be relaxed in future versions of

AsmL.

Example 5 Continuation of declarations

class Cell
 const id as String

 SetValue(i as Integer)

GetValue() as Integer

Main()

step
 let c = new Cell("ID1", 42)
step
 WriteLine(c.GetValue())

class Cell // continuation of class

var storage as Integer

SetValue(i as Integer) // continuation of method
 Storage := i

GetValue() as Integer // continuation of method
 return storage

 Fehler! Formatvorlage nicht definiert. 19

4.1 Values

Values are the immutable, abstract entities that exist during the run of a

program.

Evaluating an expression (i.e., a formula) at runtime produces a value. For
example, if we evaluate the expression 1 + 3 we get the value 4.

Values comprise the domain of each type. (See section 5 below for information
about types.)

The fundamental operations that apply to all values are equality (the "="
operator) and set membership (the "in" operator). We may always query
whether two expressions represent the same value and whether a given value
is an element of a given set .

Note to users

Values are "elements" in the mathematical sense. That is, they are the abstract
entities used as members of mathematical sets.

The notion of a value's "identity" is fundamental. Thus, values are immutable,
primitive entities that do not change as the system runs.

Of course, a variable (a named location that contains a value) may be

associated with various values as the system's state evolves during the run of
the program. When we speak of changing "the value of a variable" it is only the
association of variable to value that changes.

4.2 Constructors

constructor ::= literal
 | datatypeConstructor
 | collectionConstructor

Constructors denote values .

A constructor can be in one of several forms, called construction expressions .
There are three kinds of construction expressions: literals , datatype

constructors and collection constructors.

It is possible for a single value to have more than one form of construction
expression. For example, the literals 0x10 and 16 denote the same value. (The

first is just a hexadecimal representation.)

It is also possible that a construction expression will produce distinct values
when invoked in different contexts. For example, each invocation of the

operator new (to create instances of a class) will result in a distinct, new value.

4 Values, Constructors
and Patterns

 Fehler! Formatvorlage nicht definiert. 20

4.3 Literal constructors

A literal constructor denotes a value of a built -in type such as Boolean, String

and Integer. The syntax for each kind of literal is given above in section 2.6.

Example 6 Literal constructors

“This is a string” // string literal
2.0 // literal for real number
0x02 // Integer literal in hexadecimal

4.4 Datatype constructors

datatypeConstructor ::= [new] typeName ["(" [exps] ")"]

Datatype construc tors denote values of class, structure and enum types. The
syntax for type names is given in section 5.1 below. The syntax for expressions
("exps") is in section 7 below.

4.4.1 Instance constructors

The form new typeName (arg1, arg2, …) is called an instance constructor.

The type name given in an instance constructor must be that of a class. The
arguments provide values for the instance-level fields.

Each invocation of an instance constructor always denotes a new, distinct

value, called an instance of the class. Note that two instance constructors in the
same form with identical arguments denote two different values.

The parentheses after the type name may optionally be omitted if the class

does not include fields that need to be initialized. The keyword new is required
when instantiating values of class types.

If the type name given in a datatype constructor is that of an instantiated type

(see section 5.1.5 below), then the name of the corresponding type family may
be sometimes be substituted for the type name. This may happen when the
arguments given to the constructor fully constrain the type instantiation. See
section 5.1.5 below for an example.

Example 7 Constructing instances

class Person
 name as String

Main()
 if new Person("Bob") <> new Person("Bob") then
 WriteLine("Instance constructors always yield values " +
 "that are distinct from all other values.")

 Fehler! Formatvorlage nicht definiert. 21

4.4.2 Compound value constructors

The form typeName (arg1, arg2, …) denotes a compound value , that is, a

value of a structure type. The type name given in a compound value
constructor must be that of a structure. Note that the keyword new must not be
used when constructing values of a structure type.

Note that two compound value constructors in the same form with identical
arguments denote the same value (assuming free construction , the absence of
nondeterminism in the constructor's initialization).

The parentheses after the type name may optionally be omitted if the structure
does not include fields that need to be initialized.

Example 8 Constructing compound values

structure Point
 x as Integer
 y as Integer

Main()
 if Point(1, 2) = Point(1, 2) then
 WriteLine("Compound value constructors denote " +
 "the same values if their arguments " +
 "are identical.")

4.4.3 Enum constructors

The datatype constructor provides the syntax for enum values. This is just

elementName.

Example 9 Constructing enumerated values

enum Color
 Red
 Green

Main()
 let x = Green // Green is a constructor
 match x
 Green: WriteLine("x is Green")

4.5 Collection constructors

collectionConstructor ::= tupleExp | setExp | seqExp | mapExp
tupleExp ::= "(" exp "," exps ")"
setExp ::= "{" [comprehension | exps | range] "}"
seqExp ::= "[" [comprehension | exps | range] "]"
mapExp ::= "{" (mapComprehension | mapExps | "->") "}"

 Fehler! Formatvorlage nicht definiert. 22

range ::= exp ".." exp
comprehension ::= exp "|" binders
mapComprehension ::= maplet "|" binders
mapExps ::= maplet { "," maplet }
maplet ::= exp "->" exp

Collection constructors yield values of AsmL's built -in types for sequences,
sets, maps and tuples.

4.5.1 Tuple construction

A construction expression in the form (arg1, arg2, …) denotes a tuple, or an
element of a product type (see section 4).

Note that the form (arg) denotes the value given by arg. The form () is not
the constructor of any value. An error will occur if () appears in a context that
requires a value.

Example 10 Constructing tuples

(1, 2, "abc") // value of type (Integer, Integer, String)

4.5.2 Set construction

Construction expressions for the built- in type family Set have three forms: set
range, set comprehension and set display .

A set range is in the form {arg1..arg2} , where arg1 and arg2 are
expressions. The set range denotes the set of all values greater than or equal
to arg1 and less than or equal to arg2. Both arguments must be of the same

type. The argument types for a set range may be Integer, Long, Short, Byte
and Char.

Set comprehension denotes sets in terms of iteration expressions. Its form is

{exp | binder1, binder2, …}. The values given by evaluating exp in each
binding context constitute the value of the set denoted by the comprehension
expression. Binders are described below in 4.7.

Set display is an enumeration of values in the f orm {arg1, arg2, …},
denoting the set that contains each of the given values. Duplicate values are
ignored. The order that values are given in a set display does not matter.

Example 11 Constructing sets

x = {2..5} // same as {3, 2, 5, 4}
y = {i | i in x where i < 4} // same as {2, 3}
z = {3, 2} // same as y

 Fehler! Formatvorlage nicht definiert. 23

4.5.3 Sequence construction

Construction expressions for the built- in type Seq have three forms: sequence

range, sequence comprehension and sequence display.

A sequence range is in the form [arg1..arg2], where arg1 and arg2 are
expressions. The set range denotes the ordered sequence of all values greater

than or equal to arg1 and less than or equal to arg2. Both arguments must be
of the same type. The argument types for a set range may be Integer, Long,
Short, Byte and Char .

Sequence comprehension denotes sequence in terms of iteration expressions.
Its form is [exp | binder1, binder2 , …]. The values given by evaluating
exp for each binding in left -to-right order produce the sequence of values
denoted by the comprehension. Binders are described below in 4.7

Sequence display is an enumeration of values in the form [arg1, arg2, …],
denoting the sequence whose ith element equals the ith argument in the
constructor. The order of elements is significant, and duplicate values are
respected.

Example 12 Constructing sequences

x = [2..5] // same as [2, 3, 4, 5]
y = [i | i in x where i < 4] // same as [2, 3]
z = [2, 3] // same as y
w = [2, 2, 3] // not the same as z

4.5.4 Map construction

Map display is an enumeration of individual element-to-element associations in
the form {key1 -> val1, key2 -> val2, …}. A map display denotes a map
value M such that M(key i) yields vali for each key i and vali given. If any two

values key i and key j are the same, then vali and valj must denote identical
values, or an error occurs.

Map comprehension denotes a map in terms of iterated expressions. Its form is

{expr1 -> expr2 | binder1 , binder2 , …}. This form denotes a Map value
constructed by evaluating expr1 and expr2 for each iterated binding and
collecting the key/value pairs into a table. Binders are described below in 4.7.

The form {->} denotes the empty map.

Example 13 Constructing maps

x = {2..5}
y = {i -> i + 1 | i in x where i < 4}
z = {2 -> 3, 3 -> 4} // same as y
WriteLine(z(2)) // prints 3

 Fehler! Formatvorlage nicht definiert. 24

4.6 Patterns

pat ::= "_"

 | literal
 | id [as typeExp]
 | tuplePat
 | datatypePat
 | mapletPat

tuplePat ::= "(" pats ")"
datatypePat ::= typeName ["(" [pats] ")"]
mapletPat ::= pat "->" pat
 pats ::= pat { "," pat }

Patterns are destructuring forms. With patterns, the user can decompose a
value into its constituent parts using syntax that mirrors the value's constructor
(see section 4.3).

Patterns are used for matching, the process of testing whether the constructor
of a given value has the same form as a given pattern. Matching occurs when
the pattern form is consistent with the constructor of the value being matched.

Pattern syntax is also used for binding, the process of associating an identifier
with a value. (The "let" statement is an example of binding.) Note that matching
must also occur if any binding is to take place.

Patterns occur in four contexts in AsmL:

• As cases in a match statement (see section 7.6.2 below).

• In a let statement to indicate the names that will be bound to values (see
section 7.2 below).

• In binder clause to give the names that will take on multiple, iterated values

(see 4.7 below).

• Within another pattern, to form a nested pattern.

Example 14 Symmetry of construction and pattern matching

structure Point
 x as Int eger
 y as Integer

Main()
 let p = Point(3, 2) // constructor
 let Point(a, b) = p // pattern
 WriteLine(a) // prints 3

 Fehler! Formatvorlage nicht definiert. 25

Note in the example how the constructor Point(3, 2) has the same form as
the pattern Point(a, b). The constructor yields a value, while the pattern is
matched against an existing value to bind a = 3 and b = 2.

4.6.1 Universal patterns

The universal pattern is an underscore token (“_”). The universal pattern can be
matched against any value but does not result in a new binding of a name to a
value.

Note that the underscore token has special meaning and may be used in AsmL
only for the universal pattern.

4.6.2 Literal patterns

A literal pattern has the same form a literal (such as a string literal or a numeric
literal). A match occurs if the value being tested equals the literal given. No

binding results.

Example 15 Pattern matching without binding

CheckRemainder(i as Integer, r as Integer)
 match i mod r
 0: WriteLine(“Divides evenly!”)
 1: WriteLine(“Has one left over”)
 _: WriteLine(“Has more than one left over”)

Main()
 CheckRemainder(3, 2) // prints "Has one left over"

In Example 15 the value of expression i mod r matches the pattern 1 (since in

this example i mod r means 3 mod 2, or the value 1.)

4.6.3 Identifier patterns

An identifier pattern matches any value, and a binding is established between
the name and the matched value. Its syntax is just that of an identifier.

Example 16 Single-name patterns

Main()
 let x = (1, “first”)

 choose y in {1, 2}
 WriteLine({z | z in {0..y}}) // prints {0, 1} or {0, 1, 2}

In Example 16 x, y and z are identifier patterns.

 Fehler! Formatvorlage nicht definiert. 26

4.6.4 The type pattern

A type pattern has the form id as type. It is similar to the identifier pattern, but

the type pattern only succeeds if the value being matched is a subtype of type.
If a match occurs, the value is bound to the name id with declared type type .

Example 17 Type patterns

structure Point
 x as Integer
 y as Integer

structure ColorPoint extends Point
 color as String

PrintPointColor(p as Point)
 match p
 cp as ColorPoint:
 WriteLine(cp.color)
 _:
 WriteLine("No color present")

Main()
 a = ColorPoint(1, 2, "red")
 PrintPointColor(a) // prints "red"

The form cp as ColorPoint in Example 17 is a type pattern. This example

shows a type-safe way of "downcasting," or determining at runtime whether a
value is in the domain a type other than its declared type.

4.6.5 Tuple pattern

The form (pattern , pattern ...) is called the tuple pattern. The pattern
matches if its form is the same as the construction expression of the given

value and each of its patterns match pairwise with those of the value. It is
possible that pattern matching is recursive.

Example 18 Tuple pattern

Main()
 let a = (1, (2, "abc"))
 let (b, (_, c)) = a // b is 1, c is "abc"
 WriteLine(c) // prints "abc"

 Fehler! Formatvorlage nicht definiert. 27

4.6.6 Datatype pattern

A datatype pattern has the form typeName (pattern1, pattern2, …). The

pattern matches if the name and patterns match the default construction
expression of the given value. This is similar in form to the default construction
expression of that datatype, either class, structure or enum.

If the constructor of a structure or class does not have any parameters, then the
pattern corresponding to that constructor may omit the parentheses. The
patterns for enums do not include parentheses.

Note that, unlike the class constructor, the datatype pattern does not use the
keyword new. (This is an exception to the rule stated above that patterns have
the same syntax as constructors.)

Example 19 Destructing patterns for structures

structure List of T
 case Nil
 case Cons
 head as T
 tail as List of T

Main()
 let x = Cons of Integer(2, Nil of Integer)
 let Cons of Integer(a, _) = x // same as a = 2
 let y = Cons(10, x)

 match y
 Cons of Integer(10, Cons of Integer(2, _)):
 WriteLine("Matched y with nested pattern")

Note to users

Pattern matching should not be used for datatypes that inherit fields from a
supertype. (The behavior in this case is undefined and may change in future
versions of AsmL.)

4.6.7 The maplet pattern

A maplet pattern has the form pattern1 -> pattern2. The symbol "->" is read
as "maps to".

The context in which a maplet pattern may appear is more restricted than other
kinds of patterns. A maplet pattern may only appear within a binder form (see
4.7 below), before the keyword in. A maplet pattern may not be used within a
match case statement, within a let binding or nested within another pattern. The
only use of a maplet pattern is to produce bindings for key/value associations

given in a map.

 Fehler! Formatvorlage nicht definiert. 28

The maplet pattern in the form pat1 -> pat2 in exp produces bindings for
every case where pat1 matches a key value of the map given by exp and pat2
matches the lookup value associated with that key.

Example 20 Maplet patterns

const myMap = {"one" -> 1, "two" -> 2, "three" -> 3}

IsOdd(x as Integer) as Boolean
 return (1 = x mod 2)

Main()
 step
 let oddNumbers = {i | i -> j in myMap where IsOdd(j)}
 WriteLine(oddNumbers) // prints {"one", "three"}

 step
 let two = the i | i -> 2 in myMap
 WriteLine(two) // prints "two"

In Example 20 the forms i -> j and i -> 2 are maplet patterns . OddNumbers

is the set of all i such that the key/value pair i-mapsto-j is found in the table
myMap and j is an odd number. Two is the (unique) i such that i-mapsto-2 is
found in the table myMap.

Note to users

Maplet patterns are more restricted than other patterns. This arises from the

fact that there is no value corresponding to key/value associations that
constitute a map.

4.7 Binders

binders ::= binder { "," bin der }
binder ::= pat (in | "=") exp [where exp]

AsmL uses a form called a binder for associating names with values. Binders
are used for

• comprehension (see sections 4.5.2, 4.5.3 and 4.5.4 above),

• quantification (see section 7.7 below),

• nondeterministic choice expressions (see 7.4 below),

• parallel update, and

• sequential iteration.

Binders give the identifiers to be bound by means of a pattern (see 4.6 above),
the token “in” or “=”, and an expression that provides the values that will be

 Fehler! Formatvorlage nicht definiert. 29

associated with the given identifiers. Each binder clause in a series is delimited
by a comma (","). Each binder may optionally include a where clause that
further restricts the bindings produced.

Depending on context, binders support simple binding, iterated binding and
nondeterministic choice . Simple binding and nondeterministic choice result in a
single association of names to values; iterated binding produces multiple
associations of names and values.

Simple binding occurs when the equal sign (“=”) is used in a binder.

Iterated binding occurs when the “in” keyword is used in a binder, except that
within a choose-expression the “in” keyword is interpreted as nondeterministic
choice.

With iterated binding, a binder produces one name/value association for each
possible match of the pattern to the left of "in" with each value in the set,
sequence or map that appears to the right of "in".

If there is more than one binder, the iteration occurs in a nested binding. This
means that the bindings proceed in an outer-to-inner fashion, with the left-most
binder acting as the outer-most loop. In a nested binding, it is possible to use
identifiers introduced in a binder within expressions that occur in any other
binders that appear to the right.

There is special handling of an identifier pattern within a binder that operates on
the built -in map type. In this case, the value bound will be taken from the key
values of the map. In other words, the form x in m, where m is a map will be

interpreted as x in Indices(m). (The built -in library function Indices()
returns the key values of a map as a set.)

Nondeterministic choice has the same form as iterated binding, but only one

binding is created. That is, of the possible iterated bindings, one is selected in a
nondeterministic manner.

Binders may include a where clause to constrain the binding. In this case, the

bindings are filtered to only those where the expression given in the where
clause has the value true. The expression may refer to names introduced in
the pattern that precedes it.

Example 21 Simple, iterated and nondeterministic bindings

Main()
 let a = 1
 let b = 2
 step foreach i in {a, b, 3} // iterated binding
 WriteLine(i)

 step // nondeterministic choice
 choose x in {a, b, 3}
 WriteLine(x)

 Fehler! Formatvorlage nicht definiert. 30

 step // nested binding
 let suits = {"Hearts", "Spades", "Clubs", "Diamonds"}
 let numbers = {"Ace", "2", "3", "4", "5", "6", "7", "8",
 "9", "10", "Jack", "Queen", "King"}
 let deck = {(n, s) | n in numbers, s in suits}
 WriteLine(Deck) // prints 52 pairs in arbitrary order

4.7.1 Parallel binding semantics

Iterated bindings may occur with sequential or parallel semantics, depending on
the context where they appear. This is a feature of AsmL that differs from other

programming languages. For example, the expression forall i in {1, 2,
3} holds i < 4 creates three bindings for the identifier i. However, these
bindings are simultaneous, not sequential (that is, they occur in parallel). You
cannot assume that the bindings occur in sequence, one after another.

4.7.2 Order of bindings

Iterated bindings that operate over sequences occur in the same order as the
sequence. Iterated bindings over maps and sets are unordered.

 Fehler! Formatvorlage nicht definiert. 31

A type characterizes a collection of values called the type’s domain.

Types are not values. Instead, types constrain which values may appear in a

given context. For example, an error will occur if the user attempts to update a
variable with a valu e that is outside of domain of the type declared for that
variable. Similarly, an error will occur if arguments provided when a method is
invoked violate the type constraints given for the method.

It is possible that a given value may be an element of more than one type.

5.1 Type expressions

typeExp ::= optionType { or optionType }
optionType ::= atomicType ["?"]
atomicType ::= typeName | "(" typeExp { "," typeExp } ")"
typeName ::= name [typeArgs]
typeArgs ::= of optionType [to optionType]
 | of "<" typeExp { "," typeExp } ">"

Types are denoted by type expressions .

Example 22 Type expressions

var v1 as Integer // type given by name
var v2 as (Integer) // same as Integer

var v3 as Integer? // option type

var v4 as Set of <Integer> // instantiated, 1 arg
var v5 as Set of Integer // (alternate form)

var v6 as Map of <Integer, String> // instantiated, 2 args
var v7 as Map of Integer to String // (alternate form)

var v8 as (Integer, String) // product type

var v9 as (Integer?, Set of String)? // nested type expression

var v10 as Integer or String // disjunctive type

var v11 as (Integer or String)? // nested type expression

Example 22 shows the declaration of eleven variables. Each variable is
declared as being of a type given by the type expression that follows the as
keyword. The keyword var is short for "variable."

The following subsections describe the various kinds of type expressions.

5 Types

 Fehler! Formatvorlage nicht definiert. 32

5.1.1 Disjunctive types

A disjunctive type in the form t or s includes all of the values of type t plus the

values of type s.

Example 23 Disjunctive type

MyFun(x as Integer or String) as String
 if x is Integer then
 return "Found integer."
 else
 return "Found string."

Main()
 step
 WriteLine(MyFun(2)) // prints "Found integer."
 step
 WriteLine(MyFun("abc")) // prints "Found string."
 step
 WriteLine(MyFun(3.0)) // causes type error

Example 23 shows a function that accepts either an Integer or a String as its
argument. A type error occurs when the program passes a value of type double
(3.0) to the function.

5.1.2 Option type s

An option type in the form t? includes all of the values of type t plus the special

value null. An option type is just shorthand syntax for the frequently used
disjunctive type t or Null.

For example, a variable declared using the option type Boolean? could contain

either o f the Boolean values true and false or the value null.

Note that unlike other many other languages, class types in AsmL do not
include the null value in their domains. Contexts that permit a null value must

indicate this explicitly by using an appropriate option type or disjunctive type .

5.1.3 Product types

A product type is an ordering of two or more types in the form (t1, t2, ...) .

For example, the type (Integer, String) has as values all pairs whose first
element is an Integer and whose second element is a String. Thus, the pair

(1, "abc") is a value of type (Integer, String) . (The values of product
types are called tuples and are denoted inside parentheses with comma-
delimited expressions.)

A parenthesized type form (t) is equivalent to t. The parenthesized type form
is not a product type.

 Fehler! Formatvorlage nicht definiert. 33

5.1.4 Named types

A type may be given by name. Named types may either be built -ins such as

Integer and String (see section 5.3 below), or they may be user-declared
(see section 5.5 below).

5.1.5 Instantiated types

A type name followed by type arguments denotes an instantiated type. Type
arguments are recognizable by the keyword of.

AsmL provides for type families . Types that come from type families are called
instantiated types. For example, Set of Integer, Set of String and Set
of Char are instantiated types that come from the built-in type family , Set, that

defines generic operations for unordered collections of distinct elements .

Note that type families are not themselves types. In other words, Set is not a
type but Set of Integer is .

Type arguments are given by the keyword of followed by a sequence of
comma-delimited type expressions within angle brackets ("<" and ">"). For
example, of <Integer> and of <String, Integer, Integer> are type

arguments.

If a type argument includes only one type, then the angle brackets may be
omitted, as in Set of Integer .

If there are two type arguments, the syntax "of t1 to t2 " may be used to
mean "of <t1, t2 >".

Example 22 above includes instantiated types with type arguments .

Example 24 Type families

structure Bucket of T
 maxB ucketSize as Integer = 10
 contents as Set of T
 IsBucketSizeOK() as Boolean
 return Size(contents) <= maxBucketSize

Main()
 var b as Bucket of Integer
 step
 b := Bucket({1, 2, 3})
 step
 if (b.IsBucketSizeOK()) then
 WriteLine("Bucket b is not too big.")

Example 24 shows the declaration of a type family Bucket. The declaration of

local variable b in the Main() method refers to a specific instantiated type
Bucket of Integer taken from the type family Bucket . In other words, Bucket

 Fehler! Formatvorlage nicht definiert. 34

is a generic family of types from which any number of instantiated types may be
drawn (based on the specific choice of type T in each instantiated type).

Note to users

Type families are often used to describe collections.

5.2 Operations on types

Types support three operations: membership testing, enumeration of values
and conversion.

With membership testing, it is possible to determine whether any particular
value is in the domain of a given type by means of the operator "is." This is
further described in section 7.10.2 below.

For some types (called enumerated types) it possible to query for all values of a
type's domain. The syntax is "enum of T"; the value produced is a set of values
of type T. See section 7.13 below for more.

Type conversion occurs using the operator "as". The form exp as typeExp
applies an appropriate conversion operation to the value given by exp. AsmL
uses the CLS convention for defining conversion operations. See section 7.10.3

below.

Example 25 Type operations

class Color
 Red
 Green
 Blue

Main()
 step
 WriteLine(enum of Color) // prints {Red, Green, Blue}
 step
 if Blue is Color
 let x = Blue as Short + 1s
 WriteLine(x)

Example 25 illustrates the three type operations.

5.3 Built-in types

AsmL includes the following built -in types .

Type Description

Null The null value

Boolean The values true and false

Byte 8-bit signed integer s

 Fehler! Formatvorlage nicht definiert. 35

Short 16-bit signed integer s

Integer 32-bit signed integer type

Long 64-bit signed integer type

Float Single-precision 32- bit floating-point format type as specified in

IEEE 754.

Double Double- precision 64-bit floating-point format type as specified
in IEEE 754

Char Unicode character

String Unicode character string; e.g., "abc"

AsmL includes the following built -in type families for collections of values .

Type Family Description

Set of T Unordered, finite collections of distinct elements of type T

Seq of T Ordered, finite sequences of elements of type T

Map of T to S Tables that map distinct keys of type T to values of type S

Values of the built- in types are given by literals (see 2.6 above) and

expressions. The AsmL library provides additional operations for built -in types.
See section 11 below for a list of library operations.

Note that type String is distinct from the instantiated type Seq of Char even

though they support almost the same set of operations.

All of the AsmL-provided types are structures (see 5.5 below). This means that
semantic equality (or structural equivalence) forms the basis of equality testing

for built -in types.

Note to users

Although semantic or structural equality is common in mathematics, it is less

common in the tradition of commercial programming languages.

For example, with structural equality two sequences are considered to be the
same value if they contain the same number elements and each element is

equal.

One consequence of this view of object equality is that there is no notion of
"pointers," "references" or "shared memory" for values of any of the built -in

types. This means, for example, that two variables, each containing the same
sequence of Integers, may be independently updated.

 Fehler! Formatvorlage nicht definiert. 36

5.4 Subtypes

A type may be a subtype of several other types. The hierarchy of types given

by the type-subtype relation is a directed, acyclic graph.

If type T is a subtype of type S, then each value in the domain of T is also in the
domain of S. In other words, all of the constraints associated with type S apply

to contexts that require a subtype of S. A subtype relationship may be declared
using the "extends" or "implements" keywords (see section 5.5.1 below).

A type T that is a subtype of S is said to be a direct subtype of type S if T is not

a subtype of any other subtype of S.

Type S is said to be a supertype of type T if T is a subtype of S. In like manner,
type S is a direct supertype of type T if T is a direct subtype of S.

Subtype relationships extend through instantiations of type families of structure
types but not through instantiations of type families of class types. For example,
if T is a subtype of type S then the instantiated type Set of T is a subtype of

type Set of S, since Set of T is a structure. In contrast, for the type family
defined by "class Foo of X ..." , Foo of T would not be a subtype of
Foo of S when T is a subtype of S.

5.5 Type Declarations

type ::= [attributes] { typeModifier }
 (class | structure | interface |
 enum | delegate | constrainedType)

Type declarations introduce new named types, or if type parameters are given,
new type families. User-declared types (or type families) may be classes ,
structures, interfaces , enumerations , delegates or constrained types .

In the discussion that follows we use the term "type " to mean a named type.
This includes, if type parameters are present in the type declaration, any
instantiated type generated from a type family . See section 5.1.5 above for
more information about instantiated types.

A type's members —for example, its fields and methods—consist of local
members (whose declarations are nested within the type's declaration) as well
as all members declared in the type's supertypes. A local method may

specialize (that is, override or replace) a method given in a supertype. Fields
may not be specialized by subtypes.

Attributes and type modifiers are provided for compatibility with Microsoft's

Common Language Specification (CLS). They are described below in section
10.

Delegates are provided for compatibility with CLS. They are also described

below.

 Fehler! Formatvorlage nicht definiert. 37

5.5.1 User-declared subtypes

Type declarations may augment the type hierarchy (that is, establish new

subtype relations) by means of extends and implements clauses.

The types identified by the extends and implements clauses indicate the direct
supertypes of the type being declared. For a type family T, the direct

supertypes of an instantiated type T of <T1, T2, ...> are given by substituting
its type arguments into each type family that appears in an extends or
implements clause of T's declaration.

Subtypes introduced by extends must match the kind of declaration; for
instance, it is an error for a class to extend a structure or interface. Classes
extend classes; structures extend structures; and interfaces extend other
interfaces.

Classes and structures may extend only one other class or structure; interfaces
may extend any number of other interfaces. However, even if an interface
appears multiple times in the transitive closure of another interface’s direct
supertypes, the interface contributes its members to the derived interface only

once. In other words, the same type in several paths of the graph of direct
supertypes denotes the same instance of this supertype.

Classes and structures are said to implement the interfaces given by their

implements clause. (Interfaces may not implement anything.) Unless preceded
by the keyword "abstract," a class or structure that includes an implements
clause must provide a method (with method body) for each method of interface

that is a supertype of the class or structure.

All interfaces implicitly extend the built -in interface Object. All classes and
structures imp licitly implement Object. (AsmL provides the implementation.)

5.5.2 Interface declarations

interface ::= interface id [typeParams] [typeRelations]
 [declaration]

typeParams ::= of id [to id]
 | of "<" typeParam {"," typeParam } ">"

typeParam ::= id [typeRelations]

typeRelations ::= extends typeExps [implements typeExps]
 | implements typeExps

typeExps ::= typeExp { and typeExps }

 Fehler! Formatvorlage nicht definiert. 38

Interface declarations define new abstract types. (An abstract type has no
corresponding constructor —the values of an abstract type are only of those of
its subtypes.)

Interfaces may not contain field declarations, and a method declared within an
interface may not provide a method body. Thus, interfaces provide a
vocabulary (or type signature) without implementation. Methods are described
in section 6 below.

Implementation Note

The current AsmL compiler does not issue an error message if a body is
provided for a method declared in an interface. (The method body is ignored.)

This will be corrected in a future release.

See section 5.5.1 above for how new the extends clause may establish new
subtype relations.

Example 26 Interface declaration

interface IStream
 Read() as Char

As mentioned in section 5.1.5 above, if type parameters are given, then a type
declaration (including declarations for interfaces, classes and structures)
introduces a type family . Example 24 above gives an example of a user -
declared type family.

See section 5.5.7 below for information on type relation constraints that may
appear in type parameters.

5.5.3 Datatype declarations

class ::= [enumerated] class id [typeParams]
 [typeRelations]
 [variantOrDecl]
structure ::= structure id [typeParams]
 [typeRelations]
 [variantOrDecl]

variantOrDecl ::= declaration | variant

A datatype declaration introduces a new type of structure or class (or, if type
parameters are present, a new type family). Unlike interface declarations,

datatype declarations may include data fields.

Structures and classes are operationally distinct. The difference between them
is described in section 4.3 above.

 Fehler! Formatvorlage nicht definiert. 39

See section 5.5.1 above for how new subtype relations may be established by
datatype declarations.

See section 5.5.4 below for datatype variants.

See Section 5.5.7 below for information on type relation constraints that may
appear in type parameters.

See Section 6 below for a description of members.

AsmL does not provide the ordering operations <, >, >= and <= for structures.

5.5.4 Datatype variants

variant ::= case id [declaration]

Class and structure declarations may include variants, or subtypes declared

with special in- line syntax.

A variant of datatype T expands into a new type declaration that extends T. The
name the new type is given after the case keyword, followed by member

declarations of the new type.

Note to users

Cases should be used when the intent is to emphasize that a datatype occurs

in several variant forms (and that the variants have no independent use).

In contrast, declaring each variant as a lexically independent datatype
emphasizes the independence of each subtype in an object-oriented style.

Example 27 Datatype variants

structure List of T
 case Nil
 case Cons
 head as T
 tail as List of T

first of T (l as List of T) as T
 match l
 Nil() : throw NoSuchElementException("first")
 Cons(h, _): return h

Main()
 x = Cons("a", Nil of String())
 WriteLine(first(x)) // prints "a"

 Fehler! Formatvorlage nicht definiert. 40

Example 27 shows a typical use of datatype variants . Instantiated types based
on the List type family have two variants: either the value Nil() that
represents the empty list or a pair consisting of a head element and a tail list.
Note that operations defined for datatypes with cases often use pattern

matching (via the match operator, see section 4.6 above) to process individual
cases based on the variant's form.

Example 27 can be translated as the following:

Example 28 Structure case as subtypes

structure List of T

structure Nil of T extends List of T

structure Cons of T extends List of T
 head as T
 tail as List of T

first of T (l as List of T) as T
 match l
 Nil() : throw NoSuchElementException("first")
 Cons(h, _): return h

Main()
 x = Cons("a", Nil of String())
 WriteLine(first(x)) // prints "a"

5.5.5 Enumerations

enum ::= enum id [extends typeExp] [element]
element ::= id ["=" exp]

Enumeration declarations or introduce new types (called enums) whose
domains are given statically within the declaration.

Enums may be mapped to the integer types, Byte, Short, Integer and Long if
an extends clause is provided in the declaration. In this case, each element of
the enumeration will be a value of the given type, and the enum will be a

subtype of the given type. If no extends clause is present, "extends Integer"
is taken as the default.

By default, the first element of an enum is the value 1b, 1s, 1, or 1l, depending

on the enum 's supertype. User-provided numeric values may be associated
with an element of an enum if an equals sign ("=") follows the element. By

default, elements without user -provided numeric values increase incrementally
by one. If continued definitions are used, then order is arbitrary between blocks.

Enumerations support the <, >, <=, >= operators.

 Fehler! Formatvorlage nicht definiert. 41

Example 29 Enumeration with user-provided values

enum MyEnum extends Integer
 E_E1 = 10
 E_E2 // has v alue 11
 E_E3 = 20

Main()
 let x = E_E1
 match x
 E_E1: WriteLine("case 1") // prints "case 1"
 E_E2: WriteLine("case 2") // doesn't print
 E_E3: WriteLine("case 12") // doesn't print

Range comprehension is defined for enumerations.

Example 30 Enum Ranges

enum Color
 Red
 Orange
 Yellow
 Green
 Blue
 Indigo
 Violet

x = {Orange..Blue}
// same as {Orange, Yellow, Green, Blue}

IsWarmColor(c as Color) as Boolean
 return (x < Green)

Enums are a subtype of Integer or, if so declared, a subtype of any other

number type. You can say:

 enum LongBits extends System.Int64
 mask1 = 0x101010101010110

It is possible to use enums as bit fields. Enum values are subtypes of Integer,
so you can use BitAnd , BitOr, etc. with them. Note that the result is an
Integer and must be explicitly converted back into an enum value:

enum StatusCode
 ActiveNoError = 0
 InactiveNoError = 1
 ActiveError = 2
 InactiveError = 3

 Fehler! Formatvorlage nicht definiert. 42

IsError(x as StatusCode) as Boolean
 return (BitOr(x, 2) = 1)

IsActive(x as StatusCode) as Boolean
 return (BitOr(x, 1) = 0)

5.5.6 Constrained types

constrainedType ::= type id [typeParams] ["=" valueExp]
valueExp ::= typeExp [where exp]

A declaration of a constrained type introduces a new named type (or type
family if type parameters are given) that is defined in terms of another type. The
name "constrained type" comes from the fact the new type may be defined in
way that excludes some values (via the "where" clause) of the type on which it

is based.

If a value expression is provided, it must be a Boolean valued. The keyword
value is used as a parameter that will be given an appropriate binding when

the constraint is checked.

Constrained types are abstract. (This means that they define no constructors of
their own. The constructor of the underlying type is used instead.)

The declaration of a constrained type establishes a new subtype relation. The
constrained type is a direct subtype of the type given after the "=" sign. In the
example below, type SmallInt is a subtype of Integer.

Example 31 Constrained type

type SmallInt = Integer where value in {1, 2, 3}

type IntOrString = Integer or String

MyFun1(x as SmallInt) as IntOrString
 match x
 1: return 1
 2: return 2
 3: return "Neither 1 nor 2"

MyFun2(x as SmallInt, y as SmallInt) as SmallInt
 return ((x + y) mod 3) + 1

Main()
 step
 WriteLine(MyFun1(1)) // prints 1
 step
 WriteLine(MyFun1(3)) // prints "Neither 1 nor 2"
 step
 WriteLine(MyFun1(4)) // causes type error

 Fehler! Formatvorlage nicht definiert. 43

Example 31 declares two constrained types, SmallInt and IntOrString . The
example shows how a constrained type can serve as a "type alias," or

abbreviated way to write a complicated type expression. It also shows how a
constrained type can be used to factor data-oriented preconditions into to the

type declaration. It was not necessary to give preconditions to functions MyFun1
and MyFun2 because the relevant constraint had already been factored into the
type SmallInt.

The idea behind constrained types is that it is often convenient to factor
common preconditions into the type system, rather than by repeating identical
constraint expressions in many places. Here is an example:

class Event
 var IsCurrent as Boolean = false

GetTimeUntilStart(e as Event) as Time
 require e.IsCurrent

GetTimeUntilFinish(e as Event) as Time
 require e.IsCurrent

NotifyOrganizer(e as Event)
 require e.IsCurrent

Each of the methods contains a common precondition that constrains the
applicability of the method to "current" events. In AsmL 2, we can factor this
constraint into the type system:

type CurrentEvent = Event where value.IsCurrent

GetTimeUntilStart(e as CurrentEvent) as Time

GetTimeUntilFinish(e as CurrentEvent) as Time

NotifyOrganizer(e as CurrentEvent)

The idea is that the "IsCurrent" constraint would apply as if it were a
precondition.

Implementation Note

This feature is only partially implemented in the current distribution. In the
present release of AsmL 2, the constraints that follow the "where" clause are
permitted syntactically but not checked at runtime. This will be changed in an

updated distribution.

Nonetheless, it is recommended that constrained types be used as
documentation of the modeler's intent.

 Fehler! Formatvorlage nicht definiert. 44

It is recommended as a matter of style to factor common preconditions (i.e.,
preconditions that appear identically in many methods) into a constrained type
declaration.

5.5.7 Constraints on type parameters

The type parameters given in the declaration of a type family F may include
optional type relation constraints that limit which types may be used when
creating instantiated types based on F.

To perform this check, each type in the type arguments of an instantiated type
is compared with the type relation constraints given in the declaration of the
applicable type family . An error occurs if any of the type arguments is not a

subtype of every type given in the type relation constraint for that type
argument.

The syntax of type relation constraints is given above in section 5.5.2.

Example 32 Constraints on type parameters

interface ILabel
 Label() as String

structure LabeledList of <T implements ILabel>
 MySeq as Seq of T
 Labels() as Seq of String
 return [i.Label() | i in MySeq]

class Foo implements ILabel
 name as String
 Label() as String
 return name

Main()
 let f1 = new Foo("Label 1")
 let f2 = new Foo("Label 2")
 var myList as LabeledList of Foo
 step
 myList := LabeledList([f1, f2])
 step
 WriteLine(myList.Labels()) // prints ["Label 1", "Label
2"]

Example 32 shows an example of a type family LabeledList whose
instantiations are required to be based upon types that implement the ILabel

interface. Angle brackets (" <" and ">" are used to delimit the type parameters
and prevent the type constraints from being misinterpreted as LabeledList 's

implements clause.

 Fehler! Formatvorlage nicht definiert. 45

The Foo class implements ILabel ; therefore, it is permitted may be used to
create an instantiated type based on LabeledList .

 Fehler! Formatvorlage nicht definiert. 46

member ::= [attributes] { memberModifier }
 (constant | variable | method |
 constraint | property | event)

memberModifier ::= shared | virtual | override
 | extendedMemberModifier

Member declarations define the static vocabulary (such as field names and
method signatures) that gives the operational behavior of the program.

Member declarations consist of fields (either constant or variable), methods,
constraints, properties and events.

Members may be prefixed by attributes and method modifiers. These are

described in section 10 below.

Properties and events are provided for compatibility with the Common
Language Specification (CLS) and are described below in sections 0 and 0.

6.1 Fields

constant ::= { fieldModifier } [const] id
 (as typeExp ["=" exp] | "=" exp)

variable ::= { fieldModifier }
 var id (as typeExp ["=" exp] | "=" exp)

Field declarations introduce names that will be associated with values at
runtime.

Each distinct occurrence of a relationship between a field name and a value

during the program’s run is called a field instance. A field declaration may result
in more than one such name/value association.

For example, if the field defines an instance-level variable in a class, there will

be one name/value association of the given name for each instance of the
class.

Section 6.1.5 below describes the various contexts that produce field instances .

6.1.1 Type constraints on values of field instances

All fields have an associated type that constrains which values may be referred
to using the field name. An error occurs if an attempt is made to associate a
field name to a value that is not in the domain of the type declared for the field.
The field's type constraint applies to all field instances when they are initialized

and, if the field is a variable, when they are updated to a new value.

The type constraint may be explicitly declared by means of the as clause (in the
form as type) or given implicitly by the type associated with the field

6 Members

 Fehler! Formatvorlage nicht definiert. 47

initialization expression . A field that does not include a type constraint must
specify an initial value.

6.1.2 Constants

A field instance whose field declaration does not contain the keyword var is

called a constant. Constants may be optionally prefixed by the keyword const
(for constant).

The value of a constant is its initial value. A compiler error occurs if an update

statement attempts to change the value of a constant .

Indexing fields (i.e., those declared within a structure) may not use the keyword
const.

6.1.3 Variables

If the field declaration includes the keyword var, then each of its field instances
is a variable.

Variables are implicitly parameterized by a step of an abstract state machine. In

other words, asking for the value of a variable only makes sense wi th respect to
a particular step of a given abstract state machine. See section 8.3 below for
information how abstract state machines are created.

Update statements (see 8.1 below) are the only mechanism for changing the
value of a variable. Updates to variables occur atomically during the step
transition of the abstract state machine that provides the context for the update
operation.

Indexing fields (i.e., those declared within a structure) may not use the keyword
var.

6.1.4 Initialization of field instances

A field declaration may optionally include a field initialization expression after an

equal sign (“= ”) to specify the initial value of each field instance that arises as a
result of the declaration.

If there is no field initialization expression, then field instances are initialized in

the following way:

• If the field instance is created by invoking a default construction expression
for an enclosing type, then the initial value will be given as an argument to

the construction expression. The order of parameters in the default
constructor is the same order as the field names appear in the type
declaration.

• If the field instance is created by invoking a user-provided construction
expression for an enclosing type, then the initial value will be given by a

 Fehler! Formatvorlage nicht definiert. 48

binding expression in the body of the constructor declaration. This is
described below in section 6.2.11.

• In all other cases, the variable will remain uninitialized and any attempt to
read its value will fail with an error message.

Field initialization expressions are evaluated during the initialization of the

runtime context for each field instance. The initialization expression of a global
field occurs before the program runs. The initialization of instance-level field
occurs when a new instance of the class is created.

The initialization of instance fields is atomic. In other words, the initialization
occurs in a single step. There is no order of initialization.

6.1.5 Kinds of fields

A field is said to be a global field, a local field, an instance -level field or an
indexing field depending on the form and lexical context of its declaration.

A field declared outside of a type declaration, or within a type declaration using
the shared keyword, is called a global field. Global fields produce just one
field instance for the entire run of a program.

A field declared in a class without the shared keyword is called an instance-
level field. These fields have one instantiation per instance of the class in which
th e field declaration occurs.

A field declared in a structure without the shared keyword is called an indexing
field . Indexing fields (that is, fields declared in structures) are never instantiated
as field instances. Instead, indexing field names are indexers, or labels that

identify the constituent parts of a compound value.

Some fields arise dynamically from the evaluation of expressions. These are
called local fields and appear in certain expression contexts as described in

section 7.2 below.

Note to users

Informally, one can think of each field instance as a distinct area of the system's

memory. The memory associat ed with a field instance is never shared with any
other field instance. For example, updating a variable has an effect only upon

the field instance being updated (there is no "aliasing" in AsmL).

Nonetheless, the memory associated with a field instance may be structured
into sub-elements and may even store a variable number of elements, including

complex, nested data structures such as trees and graphs.

One can view indexing fields as a way to access the components of a
structured memory in the same manner as bit-fields in languages like C.

 Fehler! Formatvorlage nicht definiert. 49

Another way to see the difference between values of structure types and values
of class types is as the difference between call-by-value and call-by-reference.
A method call that takes a structure value as an argument can never modify
that structure, since call-by-value semantics will be used. In contrast, a method

that takes an instance of a class as an argument could modify one of the
variables defined by that instance. Instances of classes use call-by-reference
semantics.

(A structure is a series of values grouped together, while an instance of a class
is a unique object identifier.)

6.1.6 Indexing field names

Example 33 Field containing a compound value

structure Point2
 x as Integer
 y as Integer

var myPoint as Point2 = Point2(0, 0)

Main()
 step
 myPoint.x := 2
 WriteLine(myPoint.x) // prints 0
 step
 WriteLine(myPoint.x) // prints 2

Example 33 shows a single field instance (in this case, a global variable named

myPoint) that contains a compound value whose structure is given by Point2.
The value of the global myPoint field instance is indexed by named x- and y -

coordinates.

Note that the keyword "var" indicates that the field myPoint may be updated.
The indexers x and y do not need to be annotated with var (and in fact may

not be) because they never correspond to independent field instances. Instead,
to determine whether x can be updated, one needs always to find the field
instance that contains the value of type Point2.

6.1.7 Indexing parameters

When compound values contain a variable number of components, they use

indexing parameters instead of indexing field names as labels.

For example, sequences use integer subscripts as indexers, while maps use
arbitrary values as subscripts. It is possible in the case of maps for indexing

parameters to be given as a tuple.

 Fehler! Formatvorlage nicht definiert. 50

The indices of a sequence begin at zero.

Example 34 Indexing parameters vs. indexing field names

myList = ["a", "b", "c"]
myStruct = Point3(1, 2, 3)

structure Point3
 x as Integer
 y as Integer
 z as Integer

Main() =
 step WriteLine(myList(1)) // prints "b"
 step WriteLine(myStruct.y) // prints 2

Note that the compound values myList and myStruct are both composed of

three constituent values. In the case of the sequence, these components are
labeled by integer subscripts. The value named myStruct uses indexing field
names to label its internal components.

Indexing parameters are tuples of expressions that evaluate to values of
arbitrary types. Indexing parameters can be thought of as a generalization of
array subscripts.

AsmL provides four built - in datatypes that support indexing parameters : Set,
Map, Sequence and String .

The syntax for applying an indexing parameter is m(arg1, arg2, ...) . For

example, if m is a Map of (String, Integer) to Integer, then
m("abc", 1) would be used as the lookup operation.

6.2 Methods

method ::= [methodKind] methodId [typeParams]
 signature [stm]

methodKind ::= function | procedure
methodId ::= name | operator (binaryOp | unaryOp)
signature ::= params [result]
result ::= as typeExp
params ::= "(" [param { "," param }] ")"
param ::= [attributes] [paramModifier]
 [id as] typeExp

A method declaration associates a name with a param eterized expression.

 Fehler! Formatvorlage nicht definiert. 51

During the run of the program, a method may be invoked by supplying values
for each of the method's formal parameters. Method invocation always occurs
within the context of an abstract state machine.

6.2.1 Kinds of methods

Depending on its form and context, a method declaration (also called a method)
is one of four kinds: a global method, an instance-level method, a v alue-level
method or a constructor method.

Methods declared outside of a type declaration, methods declared as shared
within a type declaration , converters and operators are called global methods.

Methods declared without the shared keyword within a class declaration are

called instance- level methods .

Methods declared wit hout the shared keyword within a structure declaration
are called value -level methods.

Constructor methods have the same name as the enclosing datatype.
Constructor methods are described in section 6.2.11 below.

Example 35 Kinds of methods

m1()
 WriteLine(“M1”) // global method

class C1
 shared m2() // global method
 WriteLine(“M2”)
 m3() // instance-level method
 WriteLine(“M3”)

structure S1
 shared m4() // global method
 WriteLine(“M4”)
 m5() // value-level method
 WriteLine(“M5”)

Main()
 c = new C1()
 s = S1()

 step m1() // invoke each method
 step m2()
 step c.m3()
 step m4()
 step m5(s)

 Fehler! Formatvorlage nicht definiert. 52

6.2.2 Functions and procedures

The keywords function and procedure may optionally be used to annotate

whether a method may make updates to state. Methods annotated with the
keyword function may make no updates to state. Methods prefixed by
procedure may change state.

Implementation note

The current AsmL compiler treats the annotation of function or procedure as a

comment. A future version of the tool will perform conformance check ing for
this attribute.

6.2.3 Operators

AsmL supports a set of operators for built -in types. In addition to the predefined
implementations, user-defined implementations can be introduced using
operator declarations. Operator declarations are top- level declarations; they

may not be nested inside of a type declaration.

Dynamic method dispatch (see section 6.2.7 below) applies to the first
parameter of an operator. Static method dispatch (see section 6.2.6 below)

applies to all parameters of an operator.

Example 36 Example: Operator declaration

structure Rational
 num as Integer
 denom as Integer

operator + (x as Rational, y as Rational) as Rational

6.2.4 Conversion methods

AsmL is very restrictive with implicit conversions. AsmL does not provide

implicit conversions between types, except to allow a subtype to be used in
contexts where the supertype is expected.

Every other conversion is defined by global user defined ”ToTARGETTYPE”

methods, that take a value of the source type, and return a value of the target
type.

Example 37 Example: Conversion methods

structure Dollar
 value as Integer

ToInteger(x as Dollar) as Integer // global method
ToDollar(x as Integer) as Dollar // global method

 Fehler! Formatvorlage nicht definiert. 53

Such a conversion method is permitted from source type S to target type T only

if the following is true:

• S and T are different types

• S is not subclass of T, nor is T a subclass of S.

• Neither S nor T is an interface.

• Neither S nor T is a generic type.

Implementation Note

These conditions are not yet checked. A future version of AsmL will implement
them.

6.2.5 Method parameters

When invoked during the program’s run, the method’s formal parameters are
bound to actual arguments. In other words, method calls create a new set of

bindings, specific to a new runtime context for that invocation, of values to the
formal parameters.

A method’s formal parameters are the names given in the method’s parameter

list . The value bound to each formal parameter must be a subtype of the type
associated with the corresponding formal parameter name. The number of

formal parameters in a method declaration is fixed.

Method declarations that do not use the keyword shared and that appear
within a type declaration are implicitly parameterized by a formal parameter, me,

that is bound in the runtime context to an entity of the type given by the
enclosing type declaration.

Note that the forms x.f() and f(x) are equivalent in AsmL. Methods may be

invoked using either form. See section 7.11 below. When we speak of a
method's parameters, we include the implicit initial parameter "me."

6.2.6 Static method selection

Static method selection provides additional flexibility in naming methods by
allowing argument types to disambiguate method names. This is sometimes

referred to as overloading method names and is determined by the program
text itself (i.e., the declared types) and not by any runtime type information.

The built -in operator "+" is an example: 1 + 3 is distinct from "abc" + "def".

The first means arithmetic plus for integers; the second means string
concatenation. We can tell statically which version of "+" is intended based on
the argument types provided, integers and strings in this example.

 Fehler! Formatvorlage nicht definiert. 54

The following describes AsmL's rules for overloading method names.

A method is said to be applicable if the type of the each argument (as statically

deduced from the program's text) is the same type as or a subtype of the type
given in the method's parameter list. Methods prefixed by the override
keyword are excluded from the set of applicable methods used to determine
static method selection. (Such methods are dynamically dispatched, as
described in section 6.2.7 below.)

For each method invocation, only one of the applicable methods (called the
selected method) will be invoked. The selected method is the applicable
method with the most specific declared parameters.

The parameters of method declaration M1 are said to be more specific than
those of method declaration M2 if the type of each parameter declared in M1 is
a subtype of (or the same type as) the corresponding parameter declared in

M2, provided that at least one type given in M1's parameters is a strict subtype
of (that is, not the same type as) its corresponding parameter in M2.

An error occurs if the most specific method of any set of applicable methods

cannot be determined.

An error occurs if, for a given invocation, no applicable methods have been
declared.

Disjunctive types (see section 5.1.1 above) may participate in static method
selection. The type T or S will be considered to be supertype of both type T
and type S for the purposes of static method selection, as described above. The

types S or T a nd T or S will be considered to be the same type. The type
T or T is the same as type T.

Constrained types (see section 5.5.6 above) may be used for the purposes of

static method selection. Resolution of overloading will occur as if the underlying
type referenced by the constrained type had been given in the parameter list of
the method declaratio n.

If a method invocation appears within a type declaration and could be
interpreted either as a call to a global method and as a call to a method
declared within the type (or its supertypes), then the global method is ignored.

In other words, instance-level and value-level methods are interpreted as me.id
(arg1, arg2, …) if the context allows. This interpretation excludes any global
methods in the form id (arg1 , arg2 , …) from the set of applicable methods.

Example 38 Static method selection

MyPrint(a as Integer, b as Integer)
 WriteLine("Two integers")

MyPrint(a as Integer)
 WriteLine("Integer")

 Fehler! Formatvorlage nicht definiert. 55

MyPrint(a as Null)
 WriteLine("Null")

MyPrint(a as Integer?)
 WriteLine("Integer or Null")

type Token = Integer or String

MyPrint(a as Token)
 WriteLine("Integer or String")

type SmallToken = String where Length(value) < 10

MyPrint(a as SmallToken)
 WriteLine("String")

Main()
 let a as String = "abc"
 let b as String or Integer = 1
 let c as Integer? = 1
 let d = 1 // implicit type "Integer"
 let e = null // implicit type "Null"
 let f as Integer? = null
 let g = "A long string" // implicit type "String"

 MyPrint(a) // prints "String"
 MyPrint(b) // prints "Integer or String"
 MyPrint(c) // prints "Integer or Null"
 MyPrint(d) // prints "Integer"
 MyPrint(d, d) // prints "Two integers"
 MyPrint(e) // prints "Null"
 MyPrint(f) // prints "Integer or Null"
 MyPrint(g) // runtime error

Example 38 illustrates the fact that static method selection is determined by the

declared types of the arguments provided and not their actual values. Note that
for the value g, the selected method was MyPrint(a as SmallToken), since
the SmallToken and String are equivalent for static method resolution and
since String is a subtype of "String or Integer. " This invocation results in a

runtime error because the value of g does not satisfy the constraint given by
SmallToken (that the string length be less than 10). The presence of a type
constraint does not affect overloading.

Implementation Note

The current AsmL implementation does not support the full overloading

functionality described in this section. Currently, the overloading "Integer?" is
not supported. Also, the overloading of disjunctive types is not fully
implemented.

 Fehler! Formatvorlage nicht definiert. 56

6.2.7 Dynamic method selection

In addition to the static method selection described in the previous section,

AsmL supports dynamic method selection, also called dynamic method
dispatch. Dynamic method selection allows the choice of method to be deferred
until an actual parameter is provided at runtime.

AsmL follows the conventions of the Microsoft's Common Language
Specification (CLS) in its handling of dynamic method selection. Only the first
argument to a method (typically , the implicit argument named "me") affects
dynamic method selection. Selection is based on the most specific datatype for
this parameter.

If a method is to be eligible for dynamic method dispatch, it must be declared
using the keyword "virtual." Any method that specializes a virtual method
must be declared using the keyword "override ."

Example 39 Dynamic method selection

class Food
 id as String
 virtual PrintName() as String
 return "<Food " + id + ">"

class Fruit extends Food

class Apple extends Fruit
 override PrintName() as String
 return "<Apple " + id + ">"

PrintNames(s as Seq of Food)
 step foreach f in s
 WriteLine(f.PrintName())

Main()
 PrintNames([new Apple("1"), new Fruit("2"), new Food("3")])

Example 39 shows a typical use of dynamic method dispatch. Running this
example with cause the following to be printed:

<Apple 1>
<Food 2>
<Food 3>
The PrintName() method is dynamically selected.

6.2.8 Return values

A method declaration may specify the type of the value it returns.

Return values are optional.

 Fehler! Formatvorlage nicht definiert. 57

The return value of a method is the return value of the statement block that
forms its body. See the return statement (section 7.5) for more information.

6.2.9 Recursive methods

Method invocations can be recursive.

6.2.10 Type-parameterized, generic methods

A generic method has the same form as any other method declaration , except
that one or more of the parameter and result types depend on locally defined
type parameters. All of these type parameters are defined in the local type
parameterization.

Like a parameterized type family (see section 5.1.5 above), a generic method
represents a family of related methods. In order to instantiate a generic method
with actual types, the actual types must either be specified either at the point of

the application or they must be clear from the context of the method's
invocation.

6.2.11 Constructor methods

AsmL2 allows for user -written constructors, as an alternative to the implicit,
default constructor. Here is an example:

Example 40 User-provided constructor

class Foo
 var a as Integer
 const b as String

 Foo(b as String)
 a = b.Length

The constructor is given by a method whose name is the same as the name of

the class or structure that contains it.

Fields of the structure or class are initialized by the bindings of the constructor.
In other words, the local bindings of the constructor (including named

arguments passed to the constructor) provide the initial values of fields of the
same name.

The keyword "me" may not appear within the constructor method of a structure

type. For classes, the keyword "me" may be used within the constructor method,
but accessing (either reading or updating) any fields by means of the identifier
"me" will cause an error.

A continuation constructor may be called from a base class using the syntax
mybase(arg1, arg2, ...).

 Fehler! Formatvorlage nicht definiert. 58

Example 41 User-provided constructor with inheritance

class Foo
 a as Integer
 b as String

class Bar extends Foo
 c as Boolean
 Bar(a', b', c')
 mybase(a', b')
 c = c'

If provided, the "mybase" constructor continuation must be the first statement in
th e constructor that contains it.

6.2.12 Disambiguation of method names

If a datatype implements two interfaces, it is possible for an ambiguity in

method names to arise within an enclosing type declaration. This occurs when
the two interfaces each declare a method of the same name and same
argument types.

To handle this case, it is possible in AsmL to use a qualified name as the
method identifier in a method declaration. The qualified name includes the type
name of the interface that provided the method signature.

When invoking the method, either a type conversion operation must be used or
the method must be called using the qualified name.

Example 42 Disambiguation of method names

interface IStream
 Read() as Integer

interface IReader
 Read() as Integer

class Foo implements IStream and IReader
 IStream.Read() as Integer
 return 1
 IReader.Read() as Integer
 return 2

Main()
 let f = new Foo()
 let s = f as IStream
 let r = f as IReader
 let val = (s.Read(), r.Read())
 WriteLine(val) // prints (1, 2)

 Fehler! Formatvorlage nicht definiert. 59

Implementation Note

The functionality described in this section is not yet implemented in the AsmL
compiler. It is currently not possible to implement interfaces with identical
methods.

6.3 Constraints

constraint ::= constraint [label] exp
label ::= (id | literal) ":"

A constraint is a Boolean-valued condition used to check the integrity of data-
oriented restrictions. A constraint declared within a datatype must always be
true, or an error will occur.

Example 43 Constraint declaration

structure Rational
 numerator as Integer
 denom as Integer

 constraint NonZeroDivsor : denom <> 0

Main()
 let r1 = Rational(1, 2) // OK
 let r2 = Rational(2, 0) // error occurs

 Fehler! Formatvorlage nicht definiert. 60

stm ::= local
 | assert
 | choice
 | return
 | operationalStm
 | exp

exp ::= branchExp
 | exceptExp
 | quantifierExp
 | selectExp
 | binaryExp
 | enum of typeExp
 | type of typeExp
 | do stm
 | exploration

exps ::= exp { "," exp }

Statements and expressions serve three purposes: 1) to express values in
terms of other values, 2) to query the current state of variables and 3) to

propose new values of variables that will take effect in the next step of an
abstract state machine.

The syntax of AsmL allows an expression to be used whenever a statement is

expected. In this sense AsmL expressions act as "statements" or "update
operations" in addition to their traditional role of denoting values. (The converse
is not true: statements may not be used in contexts that expect an expression.)

In this section (section 7) we describe statements and expressions that make
no changes to state. Later, in section 8, we describe state-changing operations.

7.1 Statement blocks

When invoked at runtime, statement blocks (that is, a list of stm productions)
create field instances for local fields, check runtime constraints, evaluate

expressions and optionally yield a return value.

A number of contexts in the grammar expect statement blocks to provide the
meaning of operations. Statement blocks occur inside:

• a method declaration (see section 6.2 above), as the method body , or
operation performed when the method is invoked during the run of the
program;

• a parallel update statement (see section 8.1.3 below), to effect the
individual updates of each parallel binding;

• a step of a sequential block (see section 8.3 below), to configure an

7 Statements and
Expressions

 Fehler! Formatvorlage nicht definiert. 61

abstract state machine's variables in the following step;

• a nondeterministic choice expression (see 7.4 below), to operate on the

value chosen;

• each branch of an if -then-else expression (see section 7.6.1 below), to
indicate the operation performed if the conditions given in the conditional

guard expression are satisfied;

• each case of match expression (see section 7.6.2 below), as the operation
performed when the case's pattern matches a given value;

• a try block (see section 7.7 below), as the protected operation;

• each case of exception handler (see section 7.7 below), as the operation

performed when an exception matches the selection criteria of the handler.

A statement block begins with zero or more declarations of local fields . After the
local declarations may appear zero or more assertions. After the assertions

may appear zero or more expressions.

An optional return clause terminates the statement block. The expression
given after the return keyword becomes the value of the statement block . If no

return clause is used, the block does not return a value.

In general, AsmL statements execute in parallel. Updates to state do not take
effect immediately. As a consequence, AsmL imposes only partial order on the

evaluation of the expressions given in a statement block:

• The expressions that give the initial values of the local fields are evaluated
prior to any precondition assertions. Currently, local field instances are

initialized in the order of their appearance in the block. (In a future version
of AsmL, local fields will be initialized using a partial order given by
resolving any field-to-field value dependencies.)

• Preconditions will be evaluated prior to statement-level expressions in the
block.

• Statement-level expressions will be evaluated prior to providing the return

value to the calling context. If there is no return value, then the evaluation
of statement-level expressions in the invocation of the block is not
considered to be synchronous (that is the caller need not wait for
completion). The order of evaluation of each expression in block is not

constrained. This includes the evaluation of the expression that provides
the return value.

• Postcondition assertions will be evaluated after the block's statement . An

AsmL implementation must delay the evaluation of postconditions until all
updates of the current step have been performed. In this sense,
postconditions can be seen as cons traints on the application of updates.
There is no guarantee that the postcondition will be evaluated prior to the
delivery of the statement block's return value in its invocation context.

 Fehler! Formatvorlage nicht definiert. 62

7.2 Local fields

local ::= letBinding
 | { localVariableModifier } localVar
letBinding ::= [let] pat "=" exp
localVar ::= (var | initially) id
 (as typeExp ["=" exp] | "=" exp)

Statements that are similar to field declarations (see section 6.1 above) in form
and meaning may occur within statement blocks as a means of introducing

local fields, either constants or variables.

Local fields have one field instance (see section 6.1.5 above) for each
invocation of their enclosing statement block . Local fields are both locally

scoped and ephemeral; that is, they are visible in their scope during the lifetime
of the runtime context associated with the particular invocation of the statement
block .

The scope of local fields is the region of their statement block that follows their
declaration. (There is one exception to this; see the "step" statement in section
8.3.3 below.)

Local constants are introduced as the result of pattern-based bindings in the
form let pattern "=" exp (see 4.6 above). A pattern-based binding may
establish more than one name/value association.

Note to users

The let keyword is optional when introducing local constants; however, it s use

is recommended as a matter of style to avoid confusion with the Boolean
expression for equality testing, x = y.

As a way to introduce local variables the keyword "var" is interchangeable with

the keyword "initially." The latter emphasizes the role of a local variable
within the algorithm given in a method body.

Statements that introduce local variables have the form as variables given by
field declarations.

Example 44 Local fields

class Identifier

Main()
 var x = new Identifier()
 let (a, b) = (“abc”, “def”)
 let c as String = a
 let y = x

Note to users

 Fehler! Formatvorlage nicht definiert. 63

The expression that provides the initial value of a local field is evaluated only
once in any invocation of a statement block.

This means that any local fields initialized by nondeterministic expressions
(including expressions that return a different value every time they are invoked,
such as the class construction operator "new"), can be relied upon to contain
just one value for the duration of the invocation context.

7.3 Assertion statements

assert ::= constraint | require | ensure
require ::= require [label] exp
ensure ::= ensure [label] exp

An assertion constrains the behavior of the running program for the purposes of
error checking. An AsmL implementation may optionally halt the program’s run

if an assertion’s constraint has not been met, but assertions do not otherwise
affect the meaning the program's run. In particular, a precondition or
postcondition may not cause an update statement to be evaluated. If it does, an
error will occur.

There are three forms of assertions: preconditions, postconditions and data-
oriented constraints. These are introduced by the keywords require, ensure
and constraint, respectively.

The expression given by a precondition is a predicate that must evaluate to
true if the constraint is to be satisfied. The predicate is evaluated in a context
that includes the statement block's local field instances .

The expression given by a postcondition is a predicate that must evaluate to
true if the constraint is to be satisfied. The predicate is evaluated in a context
that includes statement block's local field instances and, if the statement block

includes a return statement, a binding of the identifier result to the statement
block's return value.

Constraints introduced within statement blocks are have the same syntax as

constraints declared as members. See section 6.3 above for the syntax. Like
preconditions, constraints check that a Boolean condition is true. However,
constraints offer the additional feature of checking that the condition is true

even when updates to variables occur.

Example 45 Runtime assertion checking

Incr(x as Integer) as Integer
 require x >= 0
 ensure result = x + 1
 return ((((x + 1) * 2) - 2) / 2) + 1

Main()

 Fehler! Formatvorlage nicht definiert. 64

 step WriteLine(Incr(1))
 step WriteLine(Incr(99))

The special form resulting selectExpr may be used within a postcondition

to constrain the update set of the current step . The resulting expression returns
the value that the variable designated by the selectExpr (see section 8.1.2) will
have in the following sequential step of the current abstract state machine.

This value is only known after the update set has been completly determined
(that is, just prior to beginning of the subsequent sequential step).

Thus, the checking of a postcondition constraint that includes a "resulting

expression" is not synchronized with the statement block in which it occurs.
Instead, the constraint will be checked later, after all (parallel) updates have

been calculated for the current step.

Example 46 Use of a resulting expression

var Counter = 1

Increment()
 require Counter >= 0
 ensure resulting Counter = Counter + 1

 Counter := ((((Counter + 1) * 2) - 2) / 2) + 1

Main()
 step Increment()
 step WriteLine(Counter)
 step Increment()
 step WriteLine(Counter)

Compatibility Note

The behavior of the resulting expression may differ from this description in the

current AsmL 2 implementation.

The current AsmL2 implementation does not take into consideration all of the
updates. The resulting expression queries the statement block's contribution to

the current update set of the expressions with respect to a given location (see
7.5.1). In other words, it yields the value of a location after any updates created

within the block will have been applied.

Since the order of expression evaluation is not given, the values returned by
"resulting expressions" in AsmL 2 cannot be predicted in every case without

introducing substeps at a lower level of abstraction than given in the model.
(The value will be predictable in cases where a "total" update has occurred.)

 Fehler! Formatvorlage nicht definiert. 65

7.4 Nondeterministic choice statements

choice ::= choose [unique] binders stm

 [ifnone stm]

Choose-expressions using the keyword choose bind names to values using

nondeterministic choice.

A statement-level choose-expression begins with the keyword choose and
includes a statement block. In this form, all of the bindings established by the

binders clause will be available for reference within the statement block.

A statement-level choose-expression may optionally provide an ifnone clause.
If the choose-expression provides no bindings (for instance, when choosing

from the empty set), the ifnone statement block will be evaluated. In that case,
the value of the choose-expression is the return value of the ifnone statement
block . Otherwise, the return value is that of the statement block following the
binders clause.

If no ifnone clause is provided for a statement-level choose-expression then it
defaults to "ifnone skip".

Example 47 Statement-level nondetermism

Main()
 S = {"a", "b", "c"}
 choose i in S
 WriteLine(i + " was chosen.")

The keyword unique may be added as a constraint to indicate that the
selection is deterministic. An error will occur if the unique keyword has been

used and there is more than one possible value to be selected.

7.5 Return statements

return ::= return exp

A return statement is used as the last statement of a block to indicate the return

value of that block.

AsmL does not issue an error if the return value of a statement block (or
method) is ignored in the calling context.

Note to users

Unlike many other languages, AsmL uses "return" to indicate the value returned
from a statement block, not from a method. The return statement has no effect

on control flow.

 Fehler! Formatvorlage nicht definiert. 66

7.6 Conditional expressions

branchExp ::= ifExpr | matchExpr
ifExpr ::= if exp [then] stm
 { elseif exp [then] stm }
 [else stm]
matchExp ::= match exp case [otherwise stm]
case ::= pat [where exp] ":" stm

All conditional expressions in AsmL that return values are in the form if exp
then expr1 else expr2.

The expression that follows “if” must be of type Boolean and is called the
conditional guard. The value of a conditional expression is the value of expr1 if

the guard evaluates to true; otherwise it is expr2. Only one of expr1 and
expr2 will be evaluated. If no else clause is provided, then the default is "else
skip".

Conditional expressions may be in the form of an if -then-else expression, a
match expression or a logical operation.

Note to users

The intent of guard expressions is to control which of the br anches of the
conditional expression will be taken.

It is generally a poor modeling approach to allow guards to update variables.

Future versions of AsmL may generate a runtime error if the evaluation of a
guard results attempts to alter state by updating variables.

7.6.1 If-then-else expressions

If-then-else expressions with elseif clauses are normalized as follows:

if g1 then e1 elseif g2 then e2 else e3

is interpreted as

if g1 then e1 else (if g2 then e2 else e3)

A value- level if -then-else-expression must always provide an else expression.

(A value-level expression returns a value. This is in contrast to a statement-
level if that return a value.)

Note that elseif and else if are distinct in terms of the layout rules for block

structure given in section 3.1 above.

The keyword then is optional.

7.6.2 Match expressions

The simplest match expression is the single-case form

 Fehler! Formatvorlage nicht definiert. 67

match exp pattern : stm

Expressions in this form attempt to pattern-match pattern (in the manner

described in section 4.6 above) with the value given by evaluating exp in the
current context. If the match succeeds, then the bindings given by the pattern
are established in a new scope and the statement block given immediately after
the matched pattern is evaluated. An error occurs if the exp does not match
pattern , unless an otherwise alternative is given.

Match-expressions with more than one case can be interpreted by nesting.

match v

 pattern1: stm

 pattern2: stm

Match can be interpreted as the following:

if pattern1 matches v then

 pattern1 = v

 stm

else (if pattern2 matches v then

 pattern2 = v

 stm

 else

 throw NoMatchException)

See section 4.6 above for examples of matching.

7.6.3 Defaults for conditionals

AsmL consistently uses "skip" as the default for statement-level conditionals
and "error" as the default for conditionals that return a value.

For example “ifnone skip” is the default for statement-level choose and
“ifnone error ” is the default for expression- level choose. (Expression-level
“choose” occurs when the statement block includes a return statement.)

For example,

let x = choose s in {}
 add s to ChosenValues
 return s

would produce a runtime error, since there is no value to return. In contrast,

choose s in {}
 DoSomething()

 Fehler! Formatvorlage nicht definiert. 68

would just skip (i.e., do nothing without causing an error).

All other conditional forms make the same distinction between statement -level

and expression -level defaults:

if ... then "else" is optional; assume “else skip” in statement

contexts, “ else error” in expression contexts where a
return value is expected.

match ... If no matching case found, assume “otherwise skip” in

statement contexts, but assume “otherwise error ” for
expression-level match.

It is also possible to write an expression-level if that does not have an else

clause: let x = if a > 0 then 4. In this example, a runtime error occurs if a
is not greater than 4.

7.7 Try/catch expressions

exceptExp ::= try stm catch case
 | throw exp
 | error exp

AsmL supports exception handling with try/catch expressions.

The value of a try/catch expression is value of the statement block given in the
try clause unless an exception occurs.

An exception can be generated explicitly using an expression of the form throw
exp, where exp evaluates to a reference of an object that is derived from
System.Exception class, or it may arise from a runtime event such as a

divide-by-zero error.

If an exception occurs during the evaluation of the try block, then exception
handling is invoked as follows.

First, all updates that were collected inside the try block are discarded.

The creation of new instances of classes during the evaluation of the try block
is not reversed when an exception is thrown. This allows, for example, a newly

created instance to be used as the exception (that is, as the value of a throw
expression). The value of each field of the new instances will be the initial value
given by the instance's constructor.

Next, the exception (raised by a throw expression or generated by the runtime
environment) is matched against the cases given in the catch clause. The form
of the exception cases is identical to the cases of a match expression. Pattern

matching (identical to that of match) is used to determine which error case
applies.

 Fehler! Formatvorlage nicht definiert. 69

If an error case is matched, then the value of the statement block of that case is
the value of the try/catch expression. (Updates introduced by the matched
exception handler become part of the current step.)

If no exception handling case matches the value thrown, then the exception is
thrown in the runtime context that contains the try block. The process proceeds
recursively, and the program halts if no handler can be matched in the
outermost context.

If more than one exception is thrown within the current step of the current
abstract state machine, only one (chosen nondeterministically) will be matched
against cases given in the catch clause.

The expression error exp can be used to express an unrecoverable error. The
expression can be any expression, for example a string. (You do not need to
define an exception data type to signal an error.) "Error" may be used in any

statement context. Like "return ," the keyword "error" is not followed by
parentheses.

Errors may not be processed by any exception handler. The program will halt

when an error occurs.

function F(x as Integer) as Result
 Y := y + 1
 if P(x, y) then
 return ok
 else
 error “F’s condition violated”

7.8 Quantifying expressions

quantifierExp ::= forall binders holds exp
 | exists [unique] binders

Quantifying expressions return true or false depending on whether a condition
(given by exp) has been met universally over some collection of bindings or
existentially by at least one example.

The universal quantifier consists the keyword forall followed by one or more
binders for which a given condition must hold (given by the holds clause) if the
quantifier is true. If the binders produce no bindings (for instance, if they
iterate over an empty set), then the expression given by the holds clause is not

evaluated, but the value of the forall expression is true.

The bindings produced by the forall expression may be referenced within the
expression given by the holds clause.

The existential quantifier consists the keyword exists followed by one or more
binders. If all of the names given in the binders may be bound to values, then
the existential quantifier is true. If the binders produce no bindings (for

 Fehler! Formatvorlage nicht definiert. 70

instance, if they iterate over an empty set), then the value of the exists
expression is false.

Example 48 Quantifying expressions

S = {1, 2, 3, 4, 5, 6}

odd(i as Integer) as Boolean
 return (1 = i mod 2)

Main()
 v1 = forall i in S holds odd(i) // false
 v2 = exists i in S where i > 4 // true
 v3 = forall i in S where i > 4 holds odd(i) // false
 v4 = forall i in S where i > 100 holds odd(i) // true
 v5 = forall i in S holds exists j in S where i < j // false
 v6 = exists i in S where exists j in S where i < j // true
 v7 = exists i in S, j in S where i < j // true
 v8 = exists i in S, j in S where i + 1 = j // true
 v9 = forall i in S, j in S holds i mod j < 6 // true
 WriteLine([v1, v2, v3, v4, v5, v6, v7, v8, v9])

7.9 Selection expressions

selectExp ::= selector comprehension [ifnone exp]
selector ::= any | the | min | max | sum

A selection expression is used to query for values from a domain given by a

comprehension clause. (Recall from 4.5 above that comprehensions are in the
form exp | binder1, binder2, ...)

The value of a selection expression depends upon the selector keyword.

• For "any," the value of exp for any one of the bindings produced by the
binders clause. The selection is nondeterministic.

• The keyword "the" adds a constraint: there must be exactly one possible
binding, or an error occurs.

• The keywords "min" and "max" are used to select the smallest and largest

values possible. (The operations ">" and "<" must be defined for the data
type in question.)

• The keyword "sum" causes the value returned to be the arithmetic sum of

all values given by exp. (The operator "+" must be defined for the data type
in question.)

An error occurs if the binders produce no bindings, unless the optional ifnone

clause is provided. In this case, the value given after ifnone provides the
default value of the selection expression.

 Fehler! Formatvorlage nicht definiert. 71

Example 49 Value-level nondeterministic choice

Main()
 let S = {1, 2, 3, 4, 5}
 step
 let y = any i | i in S where i < 4
 WriteLine(y) // prints 1, 2, or 3
 step
 let z = the i | i in S where i < 2
 WriteLine(z) // prints 1
 step
 let w = sum i + 1 | i in S
 WriteLine(w) // prints 20

Example 49 includes two local fields whose values come from choose
expressions. The first can be read as "let y equal any i such that i is an
element of S where i is less than 4." The second reads as "let z equal the

(unique) i such that i is an element of S and i < 2"

The selectors min, max and sum are deterministic and return the minimum
element, maximum element and the sum of all elements described by the

comprehension.

Example 50 Selection expressions

const S = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
const T = {-1, 2, 3, 5, 7}

IsOdd(x as Integer) as Boolean
 return (x mod 2 = 1)

Main()
 let v1 = (any x | x in T where IsOdd(x) and x > 0)
 let v2 = (the val | val in T where val notin S)
 let v3 = (max x + y | x in S, y in T)
 let v4 = (min x | x in S + T)

 // v1 is one of {3, 5, 7}
 // v2 is -1
 // v3 is 17
 // v4 is -1

Although parsing without parenthes es works, it is considered to be good style

to put parentheses around every selection expression.

7.10 Primary Expressions

binaryExp ::= primaryExp { binaryOp primaryExp }
primaryExp ::= unaryOp applyExp

 Fehler! Formatvorlage nicht definiert. 72

 | applyExp [(is | as) typeExp]
 | resulting exp

unaryOp ::= not | "-"
binaryOp ::= implies | and [then] | or [else]
 | "*" | "/" | mod | "+" | "-"

 | union | intersect | merge
 | subset | subseteq | in | notin
 | "=" | "<>" | "<" | ">" | "<=" | ">="
 | eq | ne | lt | gt | lte | gte

Primary expressions consist of logical operations, arithmetic operations, and
the invocation of methods.

The meaning of the logical operators is given above in 7.7.

The arithmetic and relational expressions are defined in the AsmL library. They

appear in this reference only by virtue of their special syntactic form.

To be written: Give a precedence table.

7.10.1 Logical operations

The logical operations and and or are commutative in AsmL. There is no
implied order of evaluation of the operands.

Alternate forms are provided for the case of "sequential and" and "sequential
or" where the order of evaluation is significant. The meaning of the logical
operators and then, or else and implies are given by the following table.

E1 and then e2 if e1 then e2 else false

E1 or else e2 if e1 then true else e2

E1 implies e2 (not e1) or e2

7.10.2 Type query expressions

Type queries are Boolean expressions that return true if a value is of a given
type. Type queries are in the form applyExpr is type. See section 4 above for
more about types.

7.10.3 Type coercion expressions

AsmL allows the user to convert types using expressions in the form addExpr
as type. The type coercion operator invokes the converter method that applies
to the type being converted.

Conversions among built- in types are provided in the runtime library. See the
accompanying document: “AsmL Standard Library Reference”.

 Fehler! Formatvorlage nicht definiert. 73

Example 51 Type conversions of built-in types

Main()
 //conversions using convertors
 step WriteLine(1b as Short) // prints 1
 step WriteLine(1 as Double) // prints 1.0

 // conversions using functions
 step WriteLine(ToInteger(1.9)) // prints 1
 step WriteLine(ToChar(“a”)) // prints 'a'
 step WriteLine(ToSet([1,2,1])) // prints {1, 2}

7.11 Apply expressions

applyExp ::= atomicExp { argList }
 | mybase arglist { argList }
argList ::= "(" [exps] ")" | "." id [typeArgs] }

Apply expressions are used for global method application , instance-level

method application, map application, field access and constructor invocation.
This form also appears in the update statement given in 8.1 below and in the
resulting expression given in 7.3.

Global method application is in the form id (arg1, arg2, …). Note that
method names do not denote values in AsmL. Thus, a "method" is never the
value of an expression.

Instance- level method application is in the form atomicExp . id (arg1,
arg2, …) where the value of atomicExp is an instance of a class or a
compound value of a structure. Section 6.2.6 describes how a method is
selected for application based on the types of its arguments.

Map application is in the form exp (arg1, arg2, …) where the value of exp is a
map (that is, a value of type Map). The value of the expression is an element of
the map's range. If a tuple matching (arg1, arg2, …) is not in the map's

domain, an exception is thrown. Otherwise, the result is the matching range
value.

Field access is in the form exp.id where exp is a value of a datatype that

includes id as a field. Note that id is equivalent to me.id within a type
declaration for fields defined within the type (or any of its supertypes).

AsmL allows additional flexibility in how methods are applied to arguments.

Two syntactic forms may be used: either x.f(a, b) or f(x, a, b). These
forms have equivalent meaning.

 class C
 f(x as A)

 Main()
 c.f(x)
 f(c, x) // means the same as c.f(x)

 Fehler! Formatvorlage nicht definiert. 74

The form mybase(arg1, arg2, ...) is used within a method to invoke the

corresponding method of a direct supertype. (The method must have been
specialized using the override keyword.)

Example 52 Invocation syntax

f()
 WriteLine("Global method f() was invoked.")

class Foo
 i = "Field i was accessed."
 g()
 WriteLine("Instance-level method g() was invoked.")

h = {1 -> "Map h was applied with (1) as argument",
 2 -> "Map h was applied with (2) as argument"}

Main()
 c = new Foo()
 step f() // global method invoked
 step c.g() // instance method invoked
 step WriteLine(h(1)) // map application
 step WriteLine(c.i) // field access

7.12 Atomic expression

atomicExp ::= constructor | me | value
 | "(" exp ")"
 | id [typeArgs]

Atomic expressions denote a value in the form of a constructor , a named value
expression or the keyword me.

Constructors of values are given in 4.3.

A named value expression consists of an identifier. It denotes the value of a

field instance (either a constant or a variable) whose name is the same as the
given identifier. For variables, the value returned is always with respect to the

current step of the an abstract state machine)

The name may be local, instance-based or global. The interpretation of the
name follows AsmL's priority of name visibility: local first, instance- level second

and global third.

The keyword me may be used as an expression within a class declaration's field
initialization expressions and instance-level methods to denote the current

instance of the class in the invocation context. It may also be used in the

 Fehler! Formatvorlage nicht definiert. 75

where-clause of a constrained type if the underlying base type is a reference
type.

The keyword me may be used as an expression within a structure declaration's
value-level methods to denote compound value in the invocation context. The
keyword me may not be used in a structure's declaration 1) as part of any field
initialization expression or 2) on the left hand side of an update statement .

The keyword value may be used as an expression within the setter of a
property, the adder or remover of an event, or within the where-clause of a
constrained type if the underlying base type is a value type.

7.13 Enumerated types

In AsmL, “ enum of x ” where x is a type expression may be used to mean the
set of all values of a given type. The keyword enum is short for "enumeration,"
so "enum of T" means an "enumeration of all values of type T."

Example 53 Enumerated types

Main()
 step foreach val in enum of Boolean
 WriteLine(val) // prints true, false or false, true

If “enum of T” is used in a context where a set of values is expected, the type
must be computationally enumerable . (Otherwise you may not query for its

values.) The following built -in types are computationally enumerable: Boolean,
Char and Null. All other built -in types are not enumerable.

Whether type T is enumerable or not, the expression x is T is available to test

whether x is a value of type T.

There is no way to test whether a type is enumerable.

A d isjunctive type T or S (see section 5.1.1 above) is computationally
enumerable if both type T and type S are enumerable types. An option type T?
(see section 5.1.2 above) is computationally enumerable if type T is an
enumerable type.

Example 54 Enumerable disjunctive types

Main()
 step foreach val in enum of Boolean or Null
 WriteLine(val) // prints true, false and null

A user-defined structure or product type is computationally enumerable if all of
its fields are enumerable.

 Fehler! Formatvorlage nicht definiert. 76

Example 55 Enumerable structure type

structure Flag
 f1 as Boolean
 f2 as Boolean

Main()
 step foreach f in enum of Flag
 WriteLine(f) // Flag(true, true), Flag(true, false),
 // Flag(talse, frue) and Flag(false, false)

User-defined classes may optionally be declared as enumerable. The keyword
"enumerated" may precede a class declaration to indicate all instances of the
class should be tracked. (Note that instances of enumerated classes may be

reclaimed by the garbage collector over time.)

Example 56 Enumerated class

enumerated class A

Main()
 step
 let a1 = new A()
 let a2 = new A()
 step foreach x in enum of A
 WriteLine(x) // prints two values

Note that a step is required in this example. If there were no "step" separating

the invocation of "new" and the "forall" statement, then there would be no
values for the iteration, since the update to "A" takes effect as of the next step.

User-defined enums are enumerable.

Example 57 Enumeration of enum values

enum Color
 Red
 Green
 Blue

Main()
 WriteLine(Size(enum of Color)) // prints 3

A constrained type defined by "type where expr" (see section 5.5.6 above) is

computationally enumerable if the type given is enumerable. In addition, a
constrained type is enumerable (regardless o f whether the type given before
the where keyword is enumerable) if the expression following the where
keyword is in the form "value in expr2".

 Fehler! Formatvorlage nicht definiert. 77

Example 58 Enumeration of constrained type

type MyType = Integer where value in {1, 2, 3}

Main()
 WriteLine(Size(enum of MyType)) // prints 3

Compatibility note

The functionality described in this section is not fully implemented in the current
version of AsmL (but will be in a future release). The current implementation

differs from the description given above in that 1) all structures and conjunctive
types are not enumerable and 2) all option types and disjunctive types are not
enumerable. Also, the current implementation accepts only a type name
instead of the more general type expression in an "enum of" expression.

7.14 The do expression

The form do statement-list allows a statement block to be placed in a context
that would otherwise expect an expression. The value of the do expression is
given by the return statement in the block.

Note to users

The do expression is not normally needed in modeling. It is provided for
orthogonality. For example, "do" might be used by a code-generation tool or
compiler for inlining.

 Fehler! Formatvorlage nicht definiert. 78

operationalStm ::= update
 | parallelUpdate
 | sequence
 | skip

This section describes the part of AsmL that deals with runtime state.

AsmL uses the semantics of abstract state machines as the framework for the
dynamic aspects of the program. The practical effect of this is that AsmL has
runtime contexts called states with fixed associations of variable names to

values. The change from one state to another occurs as an atomic transaction
called a step. Within a step, any number of changes to variables may be
proposed (by means of the update statement described below), but the
changes have only effect for subsequent states. Within a given state, variables
always have the same, fixed values.

New runtime contexts may be established in four ways:

• A sequential block (in the form step ... step ...), also called a machine ,
denotes a series of runtime states. It is possible that one or more of the
steps may be iterated. The accumulated changes from all the steps will be
proposed as updates in the current runtime context. This is described
below in section 8.3.

• A process is a distinct runtime context associated with the invocation of a
method. It differs from a machine in that accumulated changes from its run
are not integrated as updates into the runtime context that spawned it .

• An agent is a separate area of memory (that is, a distinct collection of field
instances) with associated operations that occur on demand as
transactions.

• An exploration expression creates a tree of runtime states by exploring all
nondeterministic execution paths for a given expression. The result of
exploration is a collection of values taken from each possible state. Like

processes, the accumulated changes to state from subprocesses are
discarded. This is described below in section 8.7.

8.1 Update statements

update ::= applyExp (":=" | "*=" | "+=") exp
 | add exp to applyExp
 | remove exp [from applyExp]

Update statements determine a new value for the variable given by applyExpr
in the following step of the abstract state machine associated with the current
invocation context. There are three kinds of update statements: The update
operator “:=” replaces the old of a variable with a new one in the next step. The

8 State Operations

 Fehler! Formatvorlage nicht definiert. 79

add … to operation adds an element to a set. The remove … from operation
removes an element from a set or map.

The form x := exp is equivalent to x := x + exp.

The form x *= exp is equivalent to x := x * exp.

Note that an update statement has no effect on the value associated with the
given variable in the current step. Instead, the variable will be associated with
the proposed value as of the subsequent sequential step of the current abstract
state machine.

Example 59 Update statement

var i = 3

Main()
 step while i > 0
 i := i – 1 // updates i for next step
 WriteLine(i) // prints 3, prints 2, prints 1

Example 59 contains an update statement, i := i – 1, that causes the

decremented value of variable i to become the value of i in the next step of the
abstract state machine introduced by the step expression. Note that the
WriteLine expression will write the current value of field i in each step, not the

proposed value, even though the update statement occurs in the source before
the WriteLine statement.

Update statements do not return a value.

Example 60 Update statements

f1 = 100 // global constant
var f2 = “abc” // global variable
var f3 = {1, 2, 3} // global var w/ compound value

class Foo
 var f4 = “abc” // instance variable
 shared var f5 = “efg” // global variable

Main()
 c = new Foo() // local constant
 var f6 = “abc” // local variable
 step
 f1 := 200 // error! “f1” is constant
 f2 := “def” // OK, update global variable
 remove 2 from f3 // OK, update indexer
 f4 := “efg” // error! “f4” is out of scope
 c.f4 := “efg” // OK, update instance variable

 Fehler! Formatvorlage nicht definiert. 80

 f5 := “hij” // error! “f5” is not visible
 // in the current scope

 c.f5 := “hij” // OK, update global variable
 // that is in the scope of c
 c := new Foo() // error! “c” is constant
 f6 := “def” // OK, update local variable

8.1.1 Consistency of update statements

All update statements invoked with respect to a step of an abstract state

machine must be consistent , or the error InconsistentUpdate will be thrown.

Consistent in this context means that no contradiction could arise as a result of
the update. For example, if S is a set-valued variable, then any update that

adds elements to S would be considered to be consistent, since each addition
could be considered to be independent of any other addition. In contrast, if x is
an Integer-valued variable, then updating x to the value 3 and the value 4 in the
same step would be produce a contradiction.

8.1.2 Locations

The left-hand side of an update statement identifies the variable (a specific field
instance) whose value will become the proposed value (given by the right -hand
side of the update statement) in the subsequent step.

The syntactic form used on the left-hand side of an update statement is called a
location . It consists of a variable followed by optional indexers , as described in
sections 6.1.6 and 6.1.7 .

Identifying which of a location’s terms constitute the variable being updated and
which are indexers is not evident from the syntax. However, the distinction
between variables and indexing fields can be determined from the field
declaration's form and whether the field declaration was nested in a class or

structure declaration.

Note to users

Most users of AsmL may safely ignore the distinction between variables and

indexers, since it only becomes important in determining whether an update-
related inconsistency has occurred in the relatively infrequent case of nested

structures. An examp le of a nested structure is a Map that contains other Maps
as elements in its range.

Implementers and others who are interested in these details should read on.

Other readers should skip to section 8.1.3 below.

 Fehler! Formatvorlage nicht definiert. 81

The following algorithm can be used to analyze a location and identify the
variable (i.e., field instance) and any indexers that may follow it (after allowing
for the possible presence of a namespace qualifier as described in 9.3).

Initialize an empty sequence that will contain the indexers. As described in
"Fields" above, each indexer will either be an indexing field name or a tuple of
indexing parameters.

Do the appropriate case from among the following, iterating until a variable has
been found:

• If the location only has one term, interpret this name as a local variable,
instance- level variable, global variable within the current scope and stop.

• If the location is in the form N.M where M is an identifier, then evaluate N as

an expression in the current scope. If the result is a compound value (that
is, of type structure), then push M onto the front of the indexer list. Then,
take N as the location and iterate. However, if the result of evaluating N is
an instance of a class, then interpret M as the name of an instance -level
field associated with N’s value and stop.

• If the location is in the form N(…) where (…) is a tuple expression, then
evaluate N as an expression in the current scope. If the result is a
compound value (in par ticular, of type Map, Set or Seq), then evaluate the

tuple expression in the current scope and push it onto the front of the
indexer list. Then, take N as the location and iterate. However, if the result
of evaluating N in the current scope is not a compound value (for example,

an instance of a class), an error occurs.

The result of this process will be a variable and a sequence of indexers .

8.1.3 Partial and total updates

Another way to understand the behavior of updates is in terms of partial and
total updates.

When an update statement directly sets the value of a variable (without the use
of indexers), then a total update has occurred. When an update statement uses
indexers, then a partial update has occurred.

As mentioned above in section 8.1.1, all updates (including partial updates)
must be consistent.

8.2 Parallel update blocks

parallelUpdate ::= forall binders stm

Multiple updates may be added to the current step using a forall statement in

the form forall binder1, binder2 , … stm .

 Fehler! Formatvorlage nicht definiert. 82

The statement list stm is evaluated for each binding generated by the binders
(see section 4.7). The updates that result from each evaluation of the statement
block are added to the update set of the current step.

No value is returned from a forall statement .

Example 61 Parallel update

var MySet as Set of Integer = {}

const MyIntegers = {1, 2, 3, 4, 5}

Main()
 step
 forall i in MyIntegers
 require Size(MySet) = 0
 add (i + 1) to MySet // add each i + 1 to set
 step
 WriteLine(Size(MySet)) // prints 5

Example 61 illustrates the parallel nature of a forall statement. The assertion
require Size(MySet) = 0 checks that there are no elements in the set-
valued variable MySet in each iteration. The constraint is satisfied because all

of the parallel updates are deferred until the subsequent sequential step.

Thus, although iteration is present, the run consists of just two state transitions.
In the initial state, the value of MySet is the empty set, {}. In the second state,

MySet is {2, 3, 4, 5, 6}.

8.3 Sequential blocks

sequence ::= step
step ::= step [label] [iterator] stm
iterator ::= foreach binders
 | for id "=" exp to exp
 | while exp
 | until (exp | fixpoint)

Sequential blocks cause a new abstract state machine to run.

The run of the machine is given as a sequence of discrete steps .

Each step is performed in the lexical order it appears. If an iteration clause is
given, the step repeats until a stopping condition is met.

When the sequential block has completed all of its steps, its cumulative update

set is added to the update set of the current step (that is, the context in which
the sequential block was invoked). In other words, it is as if all of the updates to
variables produced by the sequential block are collapsed into a single block of

proposed (possibly partial) updates in the enclosing scope.

 Fehler! Formatvorlage nicht definiert. 83

The cumulative update set is an aggregation of all update sets of the sequential
machine, with updates in later steps overriding the updates of previous steps
for any locations that are updated more than once during the run of the
sequential block. Partial updates are treated consisten tly.

Note to users

Readers who are interested in the precise semantics of partial updates should
refer to the Microsoft Research website.

8.3.1 Effect of recursion on sequential steps

If a sequential block is invoked recursively (that is, as part of recursive method
invocation), then a new abstract state machine is created for each level of

recursion.

8.3.2 Scope of constants and variables

Any local field declarations found in steps of the sequential block are visible in
all of succeeding steps. Each succeeding step clause establishes a new scope
nested within the scope of the (lexically) previous step.

8.3.3 Iterated steps

Steps of a sequential block may be iterated if they are introduced by foreach,

while or until.

The iterated steps proceed sequentially until their stopping condition has been
met.

In the case of until fixpoint, the stopping condition is met if no non -trivial
updates have been made in the step. Updates that occur to variables declared
in abstract state machines that are nested inside the fixed -point loop are not

considered. An update is considered non-trivial if the new value is different from
the old value.

Each iterative step forms a distinct step of the abstract state machine

introduced by evaluating the sequential block.

Example 62 Sequential and parallel steps

reachable of T (root as T, arcs as Set of (T, T)) as Set of T
 var reachable = {root}
 step until fixpoint // sequential step
 forall (l, r) in arcs // parallel update
 if l in reachable and r notin reachable then
 add r to reachable
 step
 return reachable

 Fehler! Formatvorlage nicht definiert. 84

Main()
 arcs = {(1, 2), (2, 3), (4, 5), (3, 1), (10, 9)}
 WriteLine(reachable(3, arcs)) // prints {1, 2, 3}

Example 62 gives an algorithm that calculates the reachable nodes o f a

directed, possibly cyclic, graph. The local variable reachable is a set of nodes
that have been seen so far. The algorithm includes sequential aspects (iterating
after each update of the nodes on the frontier) and concurrent aspects (visiting

newly vis ible nodes).

The Main() method does not include steps. From its point of view, the program
is entirely functional. It sees only the cumulative effect of the sequential steps

that occurred in the subprogram that calculated the reachable nodes.

8.4 The skip statement

The skip statement (with syntax skip) is a null statement that performs no
update and returns no value.

Example 63 Skip statement

Main()
 var a = 0
 step
 if 2 > 1 then
 a := 2
 else
 skip
 step
 WriteLine(a) // prints 2

8.5 Processes

[TBD]

8.6 Agents

[TBD]

8.7 Exploration expressions

exploration ::= explore exp
 | search exp

 Fehler! Formatvorlage nicht definiert. 85

The explore statement takes an expression which must return a value. The
expression is evaluated as often as different choices (or combinations of
choices) are possible during the execution of that expression. (In particular, if
the expression is deterministic, then the expression is evaluation exactly once.)

The result of the explore statement is a sequence containing one result value
for each possible combination of choices.

The search expression takes an expression, may or may not return a value.

Like explore, the search expression tries different possible choices. But unlike
explore, not all possibilities are explored. Search stops the search as soon as
the expressions succeeded once.

Example 64 Select expressions

Choose() as (Integer,Integer)
x = any i | i in {1..3}
y = any i | i in {2..x} // note that for x=1, no possible
 // solution exists; thus x=1 will be
 // eliminated from the search by
 // “explore” and “search”.
return (x,y)

Main()

WriteLine(explore Choose())
// prints a sequence containing the following pairs
// (2,2), (3,2), (3,3)
// in any order.

WriteLine(search Choose())
// this prints exactly one pair.

 Fehler! Formatvorlage nicht definiert. 86

AsmL provides a module system that allows names (see section 3.3 above) to
be reused without conflict in different parts of the program. Each of these
name-distinct modules is given by a namespace declaration.

Note that the only effect of namespace declarations is the visibility of names
(that is, whether simple names or qualified names must be used.)

9.1 Unit of compilation (assembly)

An AsmL program is given syntactically as an assembly.

assembly ::= [namespaceOrDecl]
namespaceOrDecl ::= namespace | declaration

A program consists either of declarations, or of one or more namespaces which
in turn contain declarations .

9.2 Namespaces

namespace ::= [attributes] namespace name
declaration ::= import | type | member

A namespace declaration introduces a new scope (see section 3.5 above) for

the names introduced by the declarations nested with it.

A namespace declaration consists of an optional namespace clause followed
by directives and declarations. The namespace clause introduces a new scope

(distinguished by a namespace identifier). Directives affect how identifiers used
within a given namespace will be recognized. Declarations are described in
section 3 above.

The namespace identifier may be a qualified name or a simple name.

If the program does not include a namespace clause, then its declarations are
interpreted as having been preceded by “namespace Application”, and an

error will occur if a namespace clause appears anywhere in the program. In
other words, if the default namespace is used, then no user-provided
namespace declarations are allowed.

The order of namespace declarations in the program does not matter.
Namespaces are processed together without the need for forward declaration
of elements referenced in the source before their definition.

Example 65 Namespaces

namespace Main

import MyProg

Main()

9 Namespaces

 Fehler! Formatvorlage nicht definiert. 87

 DoTopLevel()

namespace MyProg

DoTopLevel()
 WriteLine("Hello, world!")

9.3 Qualified names

The qualified form of a name (see section 3.3 above) is visible within the scope
of any namespace. The full name of the namespace is used as the identifier's
prefix.

(Names declared within a namespace may be used in unqualified form within
that namespace.)

Example 66 Use of qualified names

namespace MyProg.MySubprogram

DoTopLevel()
 WriteLine("Hello, world!")

namespace Main

Main()
 MyProg.MySubprogram.DoTopLevel()

9.4 Import directives

import ::= import name ["=" name]

An import directive introduces names declared outside of a namespace
declaration for use as simple names.

The external identif ier provided by an import directive may be a namespace

identifier of a namespace declaration of the current program, or it may identify
external module such as a library, whose definition is given by the external
implementation environment .

Example 67 Import Directives

namespace Application
import System // import directives
import System.IO
import SysIO = System.IO // renaming

 Fehler! Formatvorlage nicht definiert. 88

All of the names declared in the imported namespace become available as
simple names within the namespace containing the directive. These are known
as imported names.

The global namespace Application has no special behavior with respect to
the visibility of names; it too must be imported if its names are to be used as
simple names within the scope of another namespace.

The import directive is not transitive; that is, names made visible inside a
namespace N by virtue of t he import directive may not be used as simple
names within a namespace that imports N.

The qualified forms of imported names are available within the namespace that
contains the import directive.

It is possible for a namespace to inc lude a nested declaration of the same
simple name as one of the imported names. However, each time such a name
is used, the meaning must be clarified by explicit qualification; neither can be
used as a simple name. In like manner, if two imported names are the same,
then their qualified forms must always be used.

Example 68 Explicit qualification required

namespace N1.S1
Foo()
 WriteLine("N1.S1.Foo")

namespace N2
Foo()
 WriteLine("N2.Foo")

namespace Application
import N1.S1
import N2

Foo()
 WriteLine("Main.Foo")

Main()
 step Application.Foo() // qualified even in local
scope
 step N1.S1.Foo()
 step N2.Foo()

Example 68 illustrates the fact that qualified names must be used whenever
imported names produce the possibility of ambiguity.

 Fehler! Formatvorlage nicht definiert. 89

9.4.1 Units of compilation

The external identifiers used by the import directive may refer to namespaces

that are not declared within the program but are provided by separate units of
compilation , such as the built -in library.

The division of a program into separate units of compilation does not affect its

meaning. Namespaces imported from separate units of compilation behave as
if their declarations were provided as part of the program (except that external
units of compilation may provide their own namespaces even if the program
uses the default namespace).

Implementation note

A namespace declaration may not be split across multip le units of compilation.
The program may not introduce new declarations into namespaces imported
from the external environment. An error occurs if the program contains a

namespace clause with the same name as an externally provided namespace.

The namespace AsmL contains AsmL’s standard library of operations. AsmL is
implicitly imported into every namespace.

9.5 Linkage

AsmL does not specify how it interacts with entities provided by the external

environment.

The representation of values by the language implementation is abstract .

The mechanism by which AsmL invokes external, foreign routines that are
introduced by import directives is not part of AsmL. In particular, if external
routines must be invoked in a particular order, the steps of an abstract state
machine must explicitly give this order. (By design, the order of evaluation of

expressions within a step is not specified.)

Except for the convention of the name Main to denote the program’s entry
point, the way in which AsmL programs may be invoked by the outside

environment is not part of AsmL.

For example, AsmL does not have the concept of a thread of execution, since
all computation within a step of an abstract state machine proceeds in parallel.

An AsmL implementation is free to interact with the external operating
environment in any way that preserves the semantics of the language, for
example, by using as many processes and threads as it desires. Different

implementations might make very different choices in this area. Thus, the
language definition does not specify the mechanism for synchronizing AsmL

objects with those provided by an external runtime environment.

 Fehler! Formatvorlage nicht definiert. 90

Nonetheless , Microsoft's implementation of AsmL for Windows provides
extensive integration with .NET. (This integration provides for synchronization
between AsmL objects and the external environment, but this is not part of
AsmL.) As a result, AsmL models may be invoked from test harnesses written

in any .NET-compliant language such as Visual Basic.NET and Visual C#. The
.NET integration is described in separate documentation.

It may come as a surprise that an implementation of a language focused on

rigorous semantic modeling devotes so much energy on integration with an
external operating environment. Our experience so far is that sophisticated
integration with external operating environments is an essential part of making

rigorous approaches relevant to software specification and testing in the
commercial environment. As an example of this point, the .NET integration
provided by Microsoft's AsmL compiler has been used by test harnesses that
check whether an implementation (written in a standard commercial

programming language) agrees at runtime with its (mathematically precise)
executable specification written in AsmL.

9.6 Literate programming environment

Another tenet of AsmL approach is smooth integration into existing software
development processes. In practice, this important human consideration means

that AsmL source will occur most frequently as "pseudo-code" inside of existing
text-oriented documentation.

In Microsoft, virtually all specification documents used for internal development

projects are encoded as binary files in Microsoft Word (".doc") format.
Microsoft's AsmL toolset is capable of processing AsmL source directly from
Word files (using a special AsmL "style" in the word processor).

The result of this processing step is a text file structured as XML markup that
conforms to the "AsmL.dtd" schema. This schema allows AsmL source to be
interleaved with marked-up text and links to graphics that document the design.

The benefit of XML mark-up is that it has a variety of processing options in the
documentation work flow, for example, as the basis of code review templates,
test plans, reference material for customer support personnel and even as part
of the product's external documentation. Putting AsmL-based specifications at
the center of it documentation process maximizes the benefit a development

team will receive from its investment in precise, testable specifications.

 Fehler! Formatvorlage nicht definiert. 91

This section lists features of AsmL that are specific to the .NET framework.

Note to users

These features should not be used for modeling, but only as a means of
achieving interoperability. In some cases they provide a way of bypassing

AsmL update semantics. This may be desired when integrating AsmL models
into the external environment (for example, connecting a model to a graphical
user interface), but it makes the models less analyzable for the purposes of

testing and establishing program semantics.

10.1 Modifiers

typeModifier ::= extensibility | access

access ::= public | private | protected | internal
extensibility ::= abstract | sealed

extendedMemberModifier ::= extensibility | access | primitive

paramModifier ::= primitive ref | primitive out
 | out | inout

localVariableModifier ::= primitive

Modifiers may be added to type declarations , members, parameters of methods
and local variables .

The modifiers virtual and override are used to provide methods that may be
specialized by subtypes. The keyword virtual indicates that a default
implementation is provided; however, a subtype may override this default. The

keyword override precedes a method that replaces the default given in s
supertype. (The corresponding supertype method must be virtual or
abstract.)

Override must be used whenever a method replacement occurs. If neither
"virtual" nor "abstract" is specified in a method's declaration in the base
type, then this method may not be specialized in a derived type.

The extensibility modifiers (abstract and sealed) may be added to a type or
member declaration to indicate whether additional definitions may (or in the
case of abstract, must) be provided by subtypes. A sealed method (or any

method of a sealed datatype) may not be extended.

The modifier primitive may be applied to methods, method parameters and
local variables. If provided, it indicates that AsmL update semantics do not

apply. Instead, updates to primitive variables take effect with each update
statement.

10 .NET Extensions

 Fehler! Formatvorlage nicht definiert. 92

AsmL's parameter modifiers allow for call- by-reference and output parameters.

The modifiers for access (public, private, protected and internal) have

the same meaning as other CLS-compliant languages. The modif ier may limit
the accessibility of a type's members. If unspecified, the type's visibility is
internal.

A member is accessible if it may be referred to by using a simple name, a
qualified name or the dot (".") operator. Thus, if a member is not accessible in a
given context, then there is no way to refer to it.

The members of types declared as public are accessible in every scope.

The members of types declared as private are accessible only within the
lexical scope of the type's declaration.

The members of types declared as protected are accessible only within the
scope that contains the type declaration.

The members of types declared as internal are accessible only within the
current compilation unit.

Private members are only visible in the current scope. They are present but not

visible in subtypes.

10.2 Attributes

attributes ::= { attribute }
attribute ::= "[" [target] attributeConstructor
 { "," attributeConstructor } "]"
target ::= id ":"
attributeConstructor ::= id | id "(" attributeExps ")"
attributeExps::= [exps] [namedAttrArgs]
namedAttrArgs ::= [namedAttributeArg { "," namedAttrArg }]
namedAttrArg ::= id "=" exp

Attributes in AsmL are implemented using the conventions of the Common

Language Specification (CLS). Refer to CLS documentation for their use.

10.3 Delegates

delegate ::= delegate id [typeParams] signature

Delegates in AsmL are implemented using the conventions of the Common
Language Specification (CLS). Refer to CLS documentation for more
information.

Example 69 Delegate

delegate IntFunc(i as Integer) as Integer

 Fehler! Formatvorlage nicht definiert. 93

square(i as Integer) as Integer
 return i * i

structure Incrementer
 by as Integer
 Action(i as Integer) as Integer
 return i + by

Main()
 a = new IntFunc(square)
 b = new IntFunc(Incrementer(21).Action)
 WriteLine(a(4)) // prints 16
 WriteLine(b(21)) // prints 42

10.4 Properties

property ::= property (name | me) [params] as typeExp
 (setter [getter] | getter [setter])
setter ::= set [stm]

getter ::= get [stm]

Properties in AsmL are implemented using the conventions of the Common
Language Specification (CLS). Refer to CLS documentation for their use.

10.5 Events

event ::= event name as typeExp
 (adder [remover] | remover [adder])
adder ::= add [stm]
remover ::= remove [stm]

Events in AsmL are implemented using the conventions of the Common
Language Specification (CLS). Refer to CLS documentation for their use.

10.6 Type integration

The AsmL built- in types Boolean, Byte , Short, Integer, Long, Float, Double ,

Char and String are extensions of built -in CLS types. This means that any
.NET Framework method with the appropriate parameter type may be invoked
on an AsmL value of these types.

AsmL classes and structures are implemented as CLS classes. If an AsmL
structure is prefixed by the keyword "primitive" then it is implemented as a
CLS structure. (Note that AsmL structures are more general than CLS

structures. In particular, an AsmL structure may be recursive.)

CLS classes may be made available in AsmL by means of the "import"
declaration. Since the CLS type system does not distinguish null objects (as

 Fehler! Formatvorlage nicht definiert. 94

does AsmL's), all parameters of class type T will be mapped to AsmL type T?
when imported.

10.7 Reflection

AsmL allows access to the "type" object provided by the CLR reflection

interface. The syntax is "type of T " where T is any type expression.
Operations on this value are defined by the .NET Framework.

 Fehler! Formatvorlage nicht definiert. 95

11.1 Set operations

The AsmL library provides the following operations on the built- in type family

Set:

BigUnion(Set of Set of T) as Set of T
BigIntersect(Set of Set of T) as Set of T
ChooseSubset(Set of T) as Set of T
ChooseNonemptySubset(Set of T) as Set of T
Size(Set of T) as Integer
operator `+` (Set of T, Set of T) as Set of T // union
operator union (Set of T, Set of T) as Set of T // union
operator `*` (Set of T, Set of T) as Set of T // intersection
operator intersect (Set of T, Set of T) as Set of T
operator `-` (Set of T, Set of T) as Set of T // difference
operator `<` (Set of T, Set of T) as Boolean // proper subset
operator subset
operator `<=` (Set of T, Set of T) as Boolean // subset or equal
operator subseteq
operator `>` (Set of T, Set of T) as Boolean // proper superset
operator `>=` (Set of T, Set of T) as Boolean // superset or eql
operator in (T, Set of T) as Boolean // membership tst

AsmL provides "union", "intersect" and "subset" for set union, intersection
and subset (or equal) as well as the equivalent "+", "*", "<" and "<=" operations.
The operator "-" is set difference.

11.2 Sequence operations

The AsmL library provides the following operations on the built- in type family
Seq:

Head(Seq of T) as T // the first element
Tail(Seq of T) as Seq of T // all but first
Last(Seq of T) as T // the last element
Front(Seq of T) as Seq of T // all but last

Indices(Seq of T) as Set of Integer // {0..Size(s)-1}
IndexRange(Seq of T) as Seq of Integer // [0..Size(s)-1]
Values(Seq of T) as Set of T // {i | i in s}
Reverse(Seq of T) as Seq of T // in backward order

Length(Seq of T) as Integer // number of entries
Size(Seq of T) as Integer // synonym of Length()

Drop(Seq of T, Integer) as Seq of T // all but first n elements
Take(Seq of T, Integer) as Seq of T // first n elements
Subseq(Seq of T, Integer, Integer) as Seq of T

IndexOf(Seq of T, Seq of T) as Integer // start of 1st subseq
LastIndexOf(Seq of T, Seq of T) as Integer// start of last subseq

11 Library

 Fehler! Formatvorlage nicht definiert. 96

Zip(Seq of A, Seq of B) as Seq of (A, B) // pairwise combination
Unzip(Seq of (A, B)) as (Seq of A, Seq of B) // pairwise split

operator in (T, Seq of T) as Boolean // find element in seq
operator + (Seq of T, Seq of T) as Seq of T // concatenate

The "-" operator for sequences is not provided.

11.3 Map operations

The AsmL library provides the following operations on the built- in type family
Seq:

Indices(Map of T to S) as Set of T // domain
Values(Map of T to S) as Set of S // range
Size(Map of T to S) as Integer

operator union(Map of T to S, Map of T to S) as Map of T to S
operator + (Map of T to S, Map of T to S) as Map of T to S
operator in(T, Map of T to S) as Boolean // checks domain

11.4 String operations

The AsmL2 library provides a String datatype that is compatible with the .NET
Framework System.String . However, in addition, future versions of the

compiler will support all of the sequence operations, as if String were a
subtype of the AsmL type Seq of Char.

 Fehler! Formatvorlage nicht definiert. 97

Example 1 In-place sorting 1
Example 2 Indentation as block structure 14
Example 3 Indentation as block structure 14
Example 4 Declarations 15
Example 5 Continuation of declarations 18
Example 6 Literal constructors 20
Example 7 Constructing instances 20
Example 8 Constructing compound values 21
Example 9 Constructing enumerated values 21
Example 10 Constructing tuples 22
Example 11 Constructing sets 22
Example 12 Constructing sequences 23
Example 13 Constructing maps 23
Example 14 Symmetry of construction and pattern matching 24
Example 15 Pattern matching without binding 25
Example 16 Single-name patterns 25
Example 17 Type patterns 26
Example 18 Tuple pattern 26
Example 19 Destructing patterns for structures 27
Example 20 Maplet patterns 28
Example 21 Simple, iterated and nondeterminis tic bindings 29
Example 22 Type expressions 31
Example 23 Disjunctive type 32
Example 24 Type families 33
Example 25 Type operations 34
Example 26 Interface declaration 38
Example 27 Datatype variants 39
Example 28 Structure case as subtypes 40
Example 29 Enumeration with user-provided values 41
Example 30 Enum Ranges 41
Example 31 Constrained type 42
Example 32 Constraints on type parameters 44
Example 33 Field containing a compound value 49
Example 34 Indexing parameters vs. indexing field names 50
Example 35 Kinds of methods 51
Example 36 Example: Operator declaration 52
Example 37 Example: Conversion methods 52
Example 38 Dynamic method selection 56
Example 39 User-provided constructor 57
Example 40 User-provided constructor with inheritance 58
Example 41 Disambiguation of method names 58
Example 42 Constraint declaration 59
Example 43 Local fields 62
Example 44 Runtime assertion checking 63
Example 45 Use of a resulting expression 64

12 List of Examples

 Fehler! Formatvorlage nicht definiert. 98

Example 46 Statement-level nondetermism 65
Example 47 Quantifying expressions 70
Example 48 Value -level nondeterministic choice 71
Example 49 Selection expressions 71
Example 50 Type conversions of built -in types 73
Example 51 Invocation syntax 74
Example 52 Enumerated types 75
Example 53 Enumerable structure type 76
Example 54 Enumerated class 76
Example 55 Update statement 79
Example 56 Update statements 79
Example 57 Parallel update 82
Example 58 Sequential and parallel steps 83
Example 59 Skip statement 84
Example 60 Select expressions 85
Example 61 Namespaces 86
Example 62 Use of qualified names 87
Example 63 Import Directives 87
Example 64 Explicit qualification required 88
Example 65 Delegate 92

 Fehler! Formatvorlage nicht definiert. 99

This section provides a summary of the AsmL grammar.

13.1 Lexical level

13.1.1 Identifiers

id ::= initIdChar { idChar } { '’' }
initIdChar ::= letter | ideographic | '@' | '_'
idChar ::= letter | combining | ideographic
 | digit | extender | underscore
letter ::= // per Unicode section 4.5, letter,
 excluding combining characters
combining ::= \u20DD | \u20DE | \u20DF | \u20E0
digit ::= // per Unicode section 4.6, digit char
ideographic ::= \u2FF0..\u2FFF
extender ::= \u00B7 | \u02D0 | \u02D1 | \u0387 | \u0640
 | \u0E46 | \u0EC6 | \u3005 | \u3031..\u3035

 | \u309B..\u309D | \u309E | \u30FC..\u30FE
 | \uFF70 | \uFF9E | \uFF9F
underscore ::= \u005F | \uFF3F

13.1.2 Literals

literal ::= null | boolean | integer | real | string | char

13.1.3 Boolean literals

boolean ::= true | false

13.1.4 Integer literals

integer ::= (decimal | hexadecimal) [integerSuffix]
decimal ::= digits
hexadecimal ::= '0' ('x' | 'X') hexDigit { hexDigit }
integerSuffix ::= 'l' | 'L' | 's' | 'S' | 'b' | 'B'
digits ::= digit { digit }
hexDigit ::= digit | 'a' .. 'f' | 'A' .. 'F'

13.1.5 Literals for real numbers

real ::= digits '.' digits [exponent] [realSuffix]
exponent ::= ('e' | 'E') ['+' | '-'] digits
realSuffix ::= 'f' | 'F'

13 Grammar

 Fehler! Formatvorlage nicht definiert. 100

13.1.6 String literals

string ::= quote { strChar } quote
strChar ::= readable | whiteChar | sQuote | '\' esc
readable ::= (see text)
quote ::= '"'
esc ::= 'b' | 'f' | 'n' | 't' | 'r'
 | ('u' hexDigit hexDigit hexDigit hexDigit)

13.1.7 Character literals

char ::= sQuote (readable | quote | '\' esc) sQuote
sQuote ::= "'"

13.1.8 Keywords

-> _ eq initially operator step

.. { error inout or structure

:= | event interface otherwise subset

<= } exists internal out subseteq

<> abstract explore intersect override sum

>= add extends is primitive the

(and fixpoint let private then

) any for lt procedure throw

* as forall lte process to

+ case foreach match property try

, catch from max protected type

- choose function me public union

. class get merge ref unique

/ const gt min remove until

: constraint gte mod require value

; delegate holds mybase resulting values

< do if namespace return var

= else ifnone ne sealed virtual

> elseif implements new search where

? ensure implies not set while

[enum import notin shared

] enumerated in of skip

 Fehler! Formatvorlage nicht definiert. 101

+= *=

13.2 Unit of compilation (assembly)

assembly ::= [namespaceOrDecl]
namespaceOrDecl ::= namespace | declaration
namespace ::= [attributes] namespace name
name ::= id { "." id }
declaration ::= import | type | member
import ::= import name ["=" name]

13.3 Values, constructors and patterns

13.3.1 Constructors

constructor ::= literal
 | datatypeConstructor
 | collectionConstructor

datatypeConstructor ::= [new] typeName ["(" [exps] ")"]

collectionConstructor ::= tupleExp | setExp | seqExp | mapExp
tupleExp ::= "(" exp "," exps ")"
setExp ::= "{" [comprehension | exps | range] "}"
seqExp ::= "[" [comprehension | exps | range] "]"
mapExp ::= "{" (mapComprehension | mapExps | "->") "}"
range ::= exp ".." exp
comprehension ::= exp "|" binders
mapComprehension ::= maplet "|" binders
mapExps ::= maplet {"," maplet }
maplet ::= exp "->" exp

13.3.2 Patterns

pat ::= "_"
 | literal
 | id [as typeExp]
 | tuplePat
 | datatypePat
 | mapletPat

tuplePat ::= "(" pats ")"
datatypePat ::= typeName ["(" [pats] ")"]

 Fehler! Formatvorlage nicht definiert. 102

mapletPat ::= pat "->" pat
 pats ::= pat { "," pat }

13.3.3 Binders

binders ::= binder {"," binder}
binder ::= pat (in | "=") exp [where exp]

13.4 Type expressions

typeExp ::= optionType { or optionType }
optionType ::= atomicType ["?"]
atomicType ::= typeName | "(" typeExp { "," typeExp } ")"
typeName ::= name [typeArgs]
typeArgs ::= of optionType [to optionType]
 | of "<" typeExp { "," typeExp } ">"

13.5 Type declarations

type ::= [attributes] { typeModifier }
 (class | structure | interface |
 enum | delegate | constrainedType)

13.5.1 Type Parameters

typeParams ::= of id [to id]
 | of "<" typeParam {"," typeParam } ">"

typeParam ::= id [typeRelations]

13.5.2 Type Relations

typeRelations ::= extends typeExps [implements typeExps]
 | implements typeExps

typeExps ::= typeExp { and typeExps }

13.5.3 Interface

interface ::= interface id [typeParams] [typeRelations]
 [declaration]

 Fehler! Formatvorlage nicht definiert. 103

13.5.4 Datatype declaration

class ::= [enumerated] class id [typeParams]
 [typeRelations]
 [variantOrDecl]
structure ::= structure id [typeParams]
 [typeRelations]
 [variantOrDecl]

variantOrDecl ::= declaration | variant

variant ::= case id [declaration]

13.5.5 Enumerations

enum ::= enum id [extends typeExp] [element]
element ::= id ["=" exp]

13.5.6 Constrained Types

constrainedType ::= type id [typeParams] ["=" valueExp]
valueExp ::= typeExp [where exp]

13.6 Members

member ::= [attributes] { memberModifier }
 (constant | variable | method |
 constraint | property | event)

memberModifier ::= shared | virtual | override
 | extendedMemberModifier

13.6.1 Fields

constant ::= [const] id
 (as typeExp ["=" exp] | "=" exp)

variable ::= var id (as typeExp ["=" exp] | "=" exp)

13.6.2 Methods

method ::= [methodKind] methodId [typeParams]
 signature [stm]
methodKind ::= function | procedure
methodId ::= name | operator (binaryOp | unaryOp)

 Fehler! Formatvorlage nicht definiert. 104

signature ::= params [result]
result ::= as typeExp
params ::= "(" [param { "," param }] ")"
param ::= [attributes] [paramModifier]
 [id as] typeExp

13.6.3 Constraints

constraint ::= constraint [label] exp
label ::= (id | literal) ":"

13.7 Statements and expressions

stm ::= local
 | assert
 | choice
 | return
 | operationalStm
 | exp

exp ::= branchExp
 | exceptExp
 | quantifierExp
 | selectExp
 | binaryExp
 | enum of type
 | type of type
 | do stm
 | exploration

exps ::= exp { "," exp }

13.7.1 Local fields

local ::= letBinder
 | { localVariableModifier } localVar
letBinder ::= [let] pat "=" exp
localVar ::= (var | initially) id
 (as typeExp ["=" exp] | "=" exp)

 Fehler! Formatvorlage nicht definiert. 105

13.7.2 Assertion statements

assert ::= constraint | require | ensure
require ::= require [label] exp
ensure ::= ensure [label] exp

13.7.3 Nondeterministic choice statements

choice ::= choose [unique] binders stm

 [ifnone stm]

13.7.4 Return statements

return ::= return exp

13.7.5 Conditional expressions

branchExp ::= ifExpr | matchExpr
ifExpr ::= if exp [then] stm
 { elseif exp [then] stm }
 [else stm]

matchExp ::= match exp case [otherwise stm]
case ::= pat [where exp] ":" stm

13.7.6 Try/catch expressions

exceptExp ::= try stm catch case
 | throw exp
 | error exp

13.7.7 Quantifying exp ressions

quantifierExp ::= forall binders holds exp
 | exists [unique] binders

13.7.8 Selection expressions

selectExp ::= selector comprehension [ifnone exp]
selector ::= any | the | min | max | sum

 Fehler! Formatvorlage nicht definiert. 106

13.7.9 Primary Expressions

binaryExp ::= primaryExp { binaryOp primaryExp }
primaryExp ::= unaryOp applyExp
 | applyExp [(is | as) typeExp]
 | resulting exp

unaryOp ::= not | "-"
binaryOp ::= implies | and [then] | or [else]
 | "*" | "/" | mod | "+" | "-"

 | union | intersect | merge
 | subset | subseteq | in | notin
 | "=" | "<>" | "<" | ">" | "<=" | ">="
 | eq | ne | lt | gt | lte | gte

13.7.10 Apply expressions

applyExp ::= atomicExp { argList }
 | mybase arglist { argList }
argList ::= "(" [exps] ")" | "." id [typeArgs] }

13.7.11 Atomic expression

atomicExp ::= constructor | me | value
 | "(" exp ")"
 | id [typeArgs]

13.8 Runtime states

operationalStm ::= update
 | parallelUpdate
 | sequence
 | skip

13.8.1 Update statements

update ::= applyExp (":=" | "*=" | "+=") exp
 | add exp to applyExp
 | remove exp [from applyExp]

13.8.2 Parallel update blocks

parallelUpdate ::= forall binders stm

 Fehler! Formatvorlage nicht definiert. 107

13.8.3 Sequential blocks

sequence ::= step
step ::= step [label] [iterator] stm
iterator ::= foreach binders
 | for id "=" exp to exp
 | while exp
 | until (exp | fixpoint)

13.8.4 Exploration expressions

exploration ::= explore exp
 | search exp

13.9 .NET Compatibility

13.9.1 Modifiers

typeModifier ::= extensibility | access

access ::= public | private | protected | internal

extensibility ::= abstract | sealed

extendedMemberModifier ::= extensibility | access | primitive

paramModifier ::= primitive ref | primitive out
 | out | inout

localVariableModifier ::= primitive

13.9.2 Attributes

attributes ::= { attribute }
attribute ::= "[" [target] attributeConstructor
 { "," attributeConstructor } "]"
target ::= id ":"
attributeConstructor ::= id | id "(" attributeExps ")"
attributeExps::= [exps] [namedAttrArgs]
namedAttrArgs ::= [namedAttributeArg { "," namedAttrArg }]
namedAttrArg ::= id "=" exp

13.9.3 Delegates

delegate ::= delegate id [typeParams] signature

 Fehler! Formatvorlage nicht definiert. 108

13.9.4 Properties

property ::= property (name | me) [params] as typeExp
 (setter [getter] | getter [setter])
setter ::= set [stm]
getter ::= get [stm]

13.9.5 Events

event ::= event name as typeExp
 (adder [remover] | remover [adder])
adder ::= add [stm]
remover ::= remove [stm]

