3.9 Logisches Programmieren und Prolog

Sprache der Logik zur Darstellung von Wissen (deklarativ) über Strukturen. Wissensherleitung durch logische Folgerung (deduktiv, Resolution usw.)

Prozedurale Sicht von Resolution

$$Z = ((Y \cdot 2) + X) - Y \qquad \qquad \text{Funktion von } X, Y$$

$$\operatorname{succ}(\operatorname{succ}(0))$$

- $0 \quad \operatorname{goal}(X, Y, Z) := \operatorname{mult}(Y, 2, A), \operatorname{add}(A, X, B), \\ \operatorname{subt}(B, Y, Z).$
- 1 $\operatorname{add}(R,\operatorname{succ}(S),\operatorname{succ}(T)):-\operatorname{add}(R,S,T).$
- 2 add(T, 0, T).
- 3 $\operatorname{subt}(\operatorname{succ}(R),\operatorname{succ}(S),T):-\operatorname{subt}(R,S,T).$
- 4 subt(T, 0, T).
- 5 $\operatorname{mult}(R,\operatorname{succ}(S),T):=\operatorname{mult}(R,S,U),\operatorname{add}(R,U,T).$
- 6 mult(R, 0, 0).

goal, add, subt, mult sind 3-stellige P-Konstanten zur Darstellung der Funktionen, die den ersten beiden Argumenten als Wert 3-Argumente zuordnen.

Wie "berechnet" sich
$$((Y \cdot 2) + X) - Y$$
, wenn $X \leftarrow \operatorname{succ}(\operatorname{succ}(0))$ und $Y \leftarrow \operatorname{succ}(0)$? $-\operatorname{goal}(\operatorname{succ}(\operatorname{succ}(0)), \operatorname{succ}(0), Z)$ $\not\downarrow$. With $Z = \operatorname{succ}(\operatorname{succ}(\operatorname{succ}(0)))$

Horn-Logik

Erinnerung: Klauseln $\{L_1, L_2, \ldots, L_n\}$ Menge von Literalen $= \{A_1, \ldots, A_n\} \cup \{\neg B_1, \ldots, \neg B_m\}$, A_j, B_j Atome.

Hornlogik: Klauseln mit höchstens einem positiven Literal, d. h. $n \leq 1$. Einteilung:

$$\begin{array}{ll} \{A, \neg B_1, \dots, \neg B_m\} \ m > 0 & \text{Regel Klausel} \\ \{A\} & \text{Fakt Klausel} \\ \{\neg B_1, \dots, \neg B_m\} \ m > 0 & \text{Goal Klausel} \\ \varnothing & \text{leeres Goal} \end{array}$$

Formeln in KLF: Endliche Mengen von Literalen.

Hornklausel	Formel von PL-1
$\overline{\{A, \neg B_1, \ldots, \neg B_m\}}$	$\forall (A \lor \neg B_1 \lor \cdots \lor \neg B_m)$ bzw. $(\forall ((B_1 \land \cdots \land B_m) \to A))$
	bzw. $(\forall ((B_1 \land \cdots \land B_m) \rightarrow A))$
$\{A\}$	$\forall \ (A)$
$\{\neg B_1,\ldots,\neg B_m\}$	$\forall \ (\neg B_1 \lor \cdots \lor \neg B_m)$
	bzw. $\neg\exists\;(B_1\wedge\cdots\wedge B_m)$
	false

Notationen:

Formel	logisches Programm	Prolog
$\forall ((B_1 \wedge \cdots \wedge B_m))$	$A \leftarrow B_1, \ldots, B_m$	$A:-B_1,\ldots,B_m.$
$\rightarrow A)$		
$\forall \ (A)$	$A \leftarrow$	A.
$\neg \exists (B_1 \wedge \cdots \wedge B_m)$	$\leftarrow B_1, \ldots, B_m$	$P - B_1, \ldots, B_m$.

Horn-Logik (Forts.)

Eine Menge von Regeln und Fakten ist ein **logisches Programm** P (d. h. die Programmformeln sind entweder Regeln oder Fakten).

Eine Struktur \mathcal{R} ist **Modell** von P, falls \mathcal{R} Modell der entsprechenden Formeln in P ist.

 $P \models \varphi$ hat die übliche Bedeutung.

Beachte: Sei P logisches Programm und ? $-B_1, \ldots, B_m$ ein nichtleeres Ziel. Dann sind äquivalent

1.
$$P \cup \{? - B_1, \ldots, B_m\}$$
 hat kein Modell (unerfüllbar)

2.
$$P \models \exists (B_1 \land \cdots \land B_m)$$

Herbrand Interpretationen reichen aus: d.h. Termmengen und Funktionen sind fest durch die Formeln (Programm) definiert.

Offen ist nur noch die Interpretation der P-Konstanten.

$$\mathcal{R} \leftrightarrow I(\mathcal{R}) = \{r(t_1,\ldots,t_n) \mid r \ P ext{-Konstante}, \ n ext{-stellig} \ t_1,\ldots,t_n \in H_P \ ext{Grundterme} \ (t_1,\ldots,t_n) \in r_{\mathcal{R}} \}$$

Semantik logischer Programme (deklarative Semantik).

Sei P ein logisches Programm. Unter den Herbrand Interpretationen die Modelle von P sind, gibt es ein minimales Herbrand Modell M_P :

$$M_P = \{r(t_1, \ldots, t_n) \mid t_1, \ldots, t_n \text{ Grundterme und}$$

 $P \models r(t_1, \ldots, t_n)\}$

 M_P lässt sich rekursiv definieren.

Horn-Logik (Forts.)

3.50 Satz

Sei $\exists X_1 \cdots \exists X_k (B_1 \land \cdots \land B_m)$ eine abgeschlossene existentielle Formel und P logisches Programm. Dann sind äquivalent:

- 1. $P \models \exists X_1 \cdots \exists X_k (B_1 \land \cdots \land B_m)$
- 2. $P \models (B_1 \land \cdots \land B_m)[X_1/t_1, \ldots, X_k/t_k]$ für Grundterme t_1, \ldots, t_k
- 3. M_p ist Modell von $\exists X_1 \cdots \exists X_k (B_1 \wedge \cdots \wedge B_m)$
- 4. $M_p \models (B_1 \land \cdots \land B_m)[X_1/t_1, \ldots, X_k/t_k]$ für Grundterme t_1, \ldots, t_k

Grundlage für M_p ist die Semantik (Bedeutung) von P. (Beachte der Satz gilt nicht für universelle Formeln!)

3.51 Beispiel

P über Signatur $0, \operatorname{succ}$ (Fkt. Symbole), add (3 St. Pr.-Konstante)

$$P: \operatorname{add}(X, 0, X).$$

 $\operatorname{add}(X, \operatorname{succ}(Y), \operatorname{succ}(Z)) : -\operatorname{add}(X, Y, Z).$

Offenbar ist

$$M_p = \{ \operatorname{add}(\operatorname{succ}^n(0), \operatorname{succ}^m(0), \operatorname{succ}^{n+m}(0)) \ n, m \in \mathbb{N} \}$$

Wie werden existentielle Anfragen beanwortet

(Frage 1) ?
$$-\operatorname{add}(\operatorname{succ}^3(0),\operatorname{succ}^8(0),Z)$$

JA mit $Z = \operatorname{succ}^{11}(0)$

(Frage 2) ? $-\operatorname{add}(X,\operatorname{succ}^8(0),Z)$
 $(P \models \exists X \exists Z \operatorname{add}(X,\operatorname{succ}^8(0),Z))$

JA mit $X = 0, Z = \operatorname{succ}^8(0)$
mit $X = \operatorname{succ}(0), Z = \operatorname{succ}(0), \ldots$

allgemeinste Lösung.

(Frage 3) ? $-\operatorname{add}(\operatorname{succ}^3(0),Y,Z)$
 $(P \models \exists Y \exists Z \operatorname{add}(\operatorname{succ}^3(0),Y,Z))$

JA mit $Y = 0, Z = \operatorname{succ}^3(0)$
mit $Y = \operatorname{succ}(0), Z = \operatorname{succ}^4(0)$
mit $Y = \operatorname{succ}(0), Z = \operatorname{succ}^5(0), \ldots$
 $Z = \operatorname{succ}^3(Y)$ ist jedoch keine allgemeinste Lösung:

Da $\forall Y \operatorname{add}(\operatorname{succ}^3(0),Y,\operatorname{succ}^3(Y))$ nicht logische Folgerung von P ist (Übung!)

(Sie ist jedoch in M_p gültig!! Induktives Theorem)

Lösungssubstitutionen

(Frage 4) ?
$$-\operatorname{add}(X, Y, \operatorname{succ}^{3}(0))$$

$$(P \models \exists X \exists Y \operatorname{add}(X, Y, \operatorname{succ}^{3}(0))$$

$$X = 0 \qquad Y = \operatorname{succ}^{3}(0)$$

$$\operatorname{succ}(0) \quad \operatorname{succ}^{2}(0)$$

$$\operatorname{succ}^{2}(0) \quad \operatorname{succ}(0)$$

$$\operatorname{succ}^{3}(0) \quad 0$$

Lösungssubstitutionen:

Sei $G=?-B_1,\ldots,B_m$ ein goal, P logisches Programm, σ Substitution, $\sigma|_G$ Einschränkung von σ auf die Variablen, die in G vorkommen.

 $\sigma = \{X_1 \leftarrow t_1, \dots, X_n \leftarrow t_n\}$ ist eine **korrekte Lösungssubstitution** für $P \cup \{G\} \text{ gdw } X_1, \dots, X_n$ kommen in G vor und $P \models \forall ((B_1 \wedge \dots \wedge B_m)\sigma).$

(Beachte: nicht äquivalent zu $M_p \models \forall ((B_1 \land \cdots \land B_m)\sigma)$ nur, falls variablenfrei).

Wie operationalisiert man die Bestimmung von korrekten Lösungssubstitutionen ? o Operationale Semantik Varianten der Resolution.

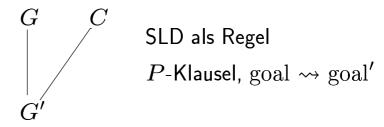
SLD-Resolution

(selective linear Resolution for definitive clauses)

Sei G goal ? $-A_1, \ldots, A_m$ und $C \equiv A : -B_1, \ldots, B_q$ eine Programmformel (q = 0 erlaubt). Seien weiterhin G und C variablendisjunkt und sei μ ein MGU von A_k und A. (Die Klauseln können resolviert werden).

Das goal

 $G' \equiv ?-A_1\mu, \ldots, A_{k-1}\mu, B_1\mu, \ldots, B_q\mu, A_{k+1}\mu, \ldots, A_k\mu$ ist eine SLD-Resolvente von G und C über μ .



SLD-Ableitungen, wie üblich definieren: Eine Ableitung der Form

 $G_0,G_1,\ldots,G_n,\ldots$ Programmformeln $C_0,C_1,\ldots,C_n,\ldots$ Substitutionen $\mu_0,\mu_1,\ldots,\mu_n,\ldots$, so dass

 G_{n+1} SLD-Resolvente von G_n und C_n über μ_n (Hierbei kommen die Variablen in C_{n+1} nicht in $G_0, G_1, \ldots, G_n, C_0, \ldots, C_n, \mu_0, \ldots, \mu_n$ vor).

3.52 Definition Sei P logisches Programm, G goal. Eine SLD-Widerlegung von $P \cup \{G\}$ ist eine endliche SLD-Ableitung. Bis zum Ziel G_n aus G, wobei G_n leer ist. C_0, \ldots, C_{n-1} sind Varianten (Umbenennungen) von Programmformeln aus P.

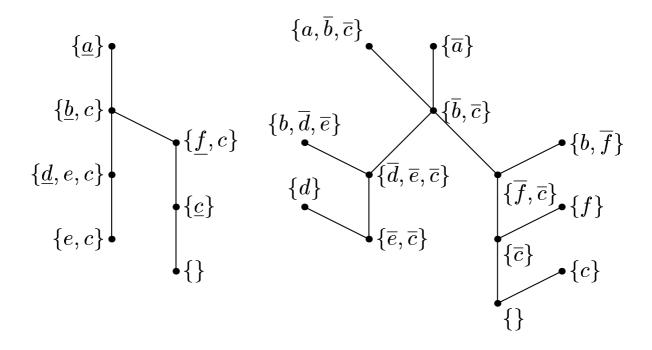
 $\mu = (\mu_0 \mu_1 \cdots \mu_{n-1})|_G$ berechnete **Lösungssubstitution**.

Beispiel

3.53 Bemerkung und Beispiel

- Korrektheit und Vollständigkeit lassen sich beweisen! Siehe etwa Leitsch: Resolutionskalküle
- Beispiel

	Klauseln
a:-b,c.	$\{a, \overline{b}, \overline{c}\}$
a:-d.	$\{a,\bar{d}\}$
b:-d,e.	$\{b, ar{d}, ar{e}\}$
b:-f.	$\{b,\bar{f}\}$
c.	$\{c\}$
c:-d,f.	$\{c,\bar{d},\bar{f}\}$
d.	$\{d\}$
f.	$\{f\}$



Operationale Semantik von PROLOG

Prolog: Logik + Kontrolle

Fixiere Reihenfolge der SLD-Schritte

- Ordne Programmformeln (Liste)
- Goals als Listen erstes Literal
- Bilde stets Resolventen mit Kopf der ersten Programmformel mit erstem Literal des Goals, **normale SLD-Resolution**.
- Probleme: Laufzeiten sind abhängig von den Reihenfolgen! Oft hilft ein Umordnen der Literale im Goal oder in den Programmklauseln.

Beispiele

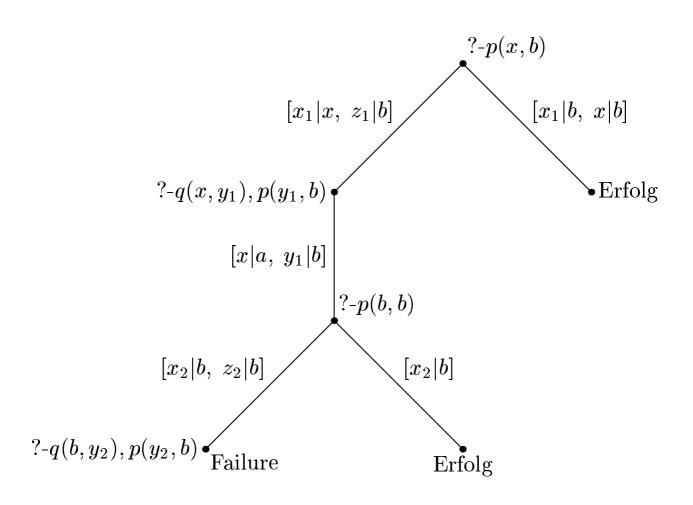
 \bullet P sei gegeben durch:

1
$$p(X,Z) := q(X,Y), p(Y,Z).$$

$$p(X,X)$$
.

$$3 \quad q(a,b).$$

 $G \equiv ? - p(X, b)$ SLD(P, G) Baum aller N-SLD Resolventen



Beispiele (Fort.)

• Umordnung der Literale in Programmformeln

1
$$p(X,Z) : -p(Y,Z), q(X,Y).$$

$$p(X,X)$$
.

$$3 \quad q(a,b).$$

$$G \equiv ? - p(X, b)$$

 $\mathsf{SLD}(P,G)$ enthält $\infty ext{-Pfade}.$

Depth First → kein Ergebnis.

Umordnung der Programmformeln

→ Umordnung des SLD-Baums

ullet Beispiel: **Listen über** Σ

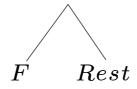
Gegeben Signatur Σ definiere Listen über Σ :

2-stellige Funktion Infix-Notation $[\cdot|\cdot]:L(\Sigma)^2 \to L(\Sigma)$

Konstante [] bezeichne die leere Liste.

Rekursive Definition:

- ullet [] ist Liste über Σ
- ullet [F|Rest] ist Liste über Σ , falls F Σ -Term oder Liste über Σ
- ullet Rest Liste über Σ



Beispiel: Listen (Forts.)

$$[F_1, F_2, \dots, F_n | Rest] := [F_1 | [F_2 | \dots | [F_n | Rest] \dots]]$$

 $[F_1, \dots, F_n] := [F_1, \dots, F_n | []]$

Operationen auf Listen

- ulletappend $([\],M,M).$
- ulletappend([X|L],M,[X|N]):-append(L,M,N).
- ? $-\mathsf{append}([a,b],[a,Y],Z)$

Ergibt: $Z \leftarrow [a, b, a, Y]$

Weitere Operationen

```
\begin{array}{l} \operatorname{element}(X,[X|L]). \\ \operatorname{element}(X,[Y|L]): -\operatorname{unequal}(Y,X), \operatorname{element}(X,L). \\ \operatorname{mirror}([\ ],[\ ]). \\ \operatorname{mirror}([X|L],M): -\operatorname{mirror}(L,N), \operatorname{append}(N,[X],M). \\ \operatorname{delete}([\ ],X,[\ ]). \\ \operatorname{delete}([X|L],X,M): -\operatorname{delete}(L,X,M) \\ \operatorname{delete}([Y|L],X,[Y|M]): -\operatorname{unequal}(Y,X), \operatorname{delete}(L,X,M). \\ \operatorname{delete}([X|L],X,L). \\ \operatorname{delete}([Y|L],X,[Y|M]): -\operatorname{unequal}(Y,X), \operatorname{delete}(L,X,M). \\ \end{array}
```

Schlussaufgabe: Formalisiere und beweise folgenden Satz:

If the professor is happy if all his students like logic, then he is happy if he has no students.