19. April 2002

Übungen zur Vorlesung

Logik

Prof. Dr. Klaus Madlener

Blatt 2

5. Aufgabe: [Substitution] Seien $A, B, C \in F$. Ferner sei $A \models = \mid B \text{ und } A$ ein Teilterm von C.

Beweisen Sie: Entsteht C' aus C durch Ersetzen ein oder mehrerer Vorkommen von A durch B, so gilt $C \models = |C'|$.

- **6. Aufgabe:** [logische Äquivalenz] Seien $A, B \in F$. Zeigen Sie: Genau dann gilt $A \models = B$, wenn $f_A = f_B$ ist.
- **7.** Aufgabe: [vollständige Operatormengen] Es sei OP eine Menge von Operatoren. Die Menge F(OP) der Formeln in den Operatoren aus OP ist definiert durch:
 - 1. $V \subseteq F(OP)$.
 - 2. Ist $A \in F(OP)$, und ist $\# \in OP$ ein einstelliger Operator, so ist $(\#A) \in F(OP)$.
 - 3. Sind $A, B \in F(OP)$, und ist $\star \in OP$ ein zweistelliger Operator, so ist $(A \star B) \in F(OP)$.
 - 4. Sind $A_1, \ldots, A_n \in F(OP)$, und ist $\star \in OP$ ein *n*-stelliger Operator $(n \geq 3)$, so ist $(\star A_1 \ldots A_n) \in F(OP)$.
 - 5. F(OP) ist die kleinste Menge mit diesen Eigenschaften.

Zeigen Sie, dass folgende Aussagen über OP äquivalent sind:

- 1. OP ist eine vollständige Operatormenge.
- 2. Für alle $n \in \mathbb{N} \setminus \{0\}$ und alle Funktionen $f : \mathbb{B}^n \to \mathbb{B}$ gibt es ein $A \in F(OP)$ mit $f = f_A$.
- 3. Für alle Funktionen $f: \mathbb{B}^2 \to \mathbb{B}$ gibt es ein $A \in F(OP)$ mit $f = f_A$.
- 8. Aufgabe: [vollständige Operatormengen] Geben Sie einen zweistelligen Operator \star an, so dass $\{\star\}$ vollständig ist.

9. Aufgabe: [logische Äquivalenz von Mengen] $X \subseteq F$ und $Y \subseteq F$ heißen logisch äquivalent mit der Schreibweise $X \models = \mid Y$, falls $\operatorname{Folg}(X) = \operatorname{Folg}(Y)$ gilt.

 $X\subseteq F$ heißt unabhängig, falls für kein $A\in X$ die Aussageform A logisch aus $X\setminus\{A\}$ folgt, d.h. es gibt kein $A\in X$ mit $X\setminus\{A\}\models A$. Zeigen Sie:

- 1. Es gibt einen Algorithmus, der zu einer endlichen Menge $X \subseteq F$ eine logisch äquivalente unabhängige Teilmenge $Y \subseteq X$ bestimmt.
- 2. Es gibt eine Menge $X\subseteq F$, die keine logisch äquivalente unabhängige Teilmenge $Y\subseteq X$ enthält.