$\mathrm{SS}~2011$

06. Juli 2011

Exercises for the Lecture Logics Sheet 11

Prof. Dr. Klaus Madlener

Delivery until 13. Juli 2011 10:00 Uhr

Exercise 1: [Axiomatisation, tutorial]

- 1. Define a first-order-formula A_n , such that every interpretation satisfying A_n has exactly n elements. More precisely, in every interpretation satisfying A_n , the domain D has exactly n elements.
- 2. Define a first-order-formula A_{∞} , such that every satisfying interpretation of A_{∞} has infinitely many elements.
- 3. Prove that the compactness theorem does not hold for second order predicate logic.

Exercise 2: [Deductions in \mathcal{F} , 2+2P]

Prove:

- 1. $\forall x[p(x,y)], y = z \vdash_{\mathcal{F}} \forall x[p(x,z)].$
- 2. $\forall x[p(x) \rightarrow q(x)], \forall x[p(x)] \vdash_{\mathcal{F}} q(f(a))$

Exercise 3: [Soundness of $\mathcal{F}\prime$, 4+1P]

- 1. Prove that the generalisation rule is sound.
- 2. As mentioned in the lecture, the proposition $\Sigma \vdash_{\mathcal{F}} A \rightsquigarrow \Sigma \vdash_{\mathcal{F}} A$ does not generally hold. This means that there are conclusions from Σ which can be deduced in \mathcal{F}_{\prime} , but not in \mathcal{F} . Why does this result not contradict the fact that both systems are sound?

Exercise 4: [Theories, 3+3P]

Prove:

- 1. Let M be a first-order-theory. There is an interpretation I that satisfies M, iff M is consistent.
- 2. If T is a consistent, incomplete first-order-theory, then for every closed formula A with $A, \neg A \notin \Sigma$, both $T_{T \cup \{A\}}$ and $T_{T \cup \{\neg A\}}$ are consistent theories.
- 3. Let T_1 and T_2 be first-order theories. If $T_1 \subsetneq T_2$ and T_1 complete, then T_2 inconsistent.

Exercise 5: [Theories, 5P]

Let T be a consistent, incomplete first-order-theory. Prove that there are at least two different relational structures satisfying T.

Exercise 6: [Non standard models, 5P]

Prove that there are non-standard-models for the Peano axioms (slide 220). I.e. prove that there is an interpretation that satisfies the Peano axioms but that is not isomorphic to \mathbb{N} .

Hint: Consider the following extended axiom system and apply the compactness theorem:

$$P^* := P \cup \{A_i \mid i \in \mathbb{N}\},\$$

where $A_i \equiv \exists z \ [S^i(0) + z = \infty]$. ∞ is a new constant and $S^i(0)$ is the *i*-fold application of S to 0. I.e. $S^3(0) \equiv S(S(S(0)))$.

Exercise 7: [Axiomatisation, 1+3+5P]

Characterise propositional logic (with the operators \neg , \wedge , and \lor and with the constants *true* and *false*) using predicate logic. Do the following:

- 1. Find a suitable language of predicate logic, s.t. every term represents a boolean formula.
- 2. Find Axioms that characterise the boolean operators. I.e. if two terms t_1 and t_2 are equivalent in propositional logic and if an interpretation I satisfies your axioms, then $I(t_1) = I(t_2)$ must hold.
- 3. Find axioms for the predicate constants taut(x), uns(x), conc(x), and eq(x, y) such that
 - $\Sigma \models taut(t)$ iff t is a propositional tautology.
 - $\Sigma \models uns(t)$ iff t is unsatisfiable in propositional logic.
 - $\Sigma \models conc(t_1, t_2)$ iff $t_1 \models t_2$ holds in propositional logic.
 - $\Sigma \models eq(t_1, t_2)$ iff t_1 and t_2 are equivalent in propositional logic.

 Σ is the set of your axioms in (2) and (3). Argue for the soundness of your axioms. How would you formally prove the soundness?

Delivery: until 13. Juli 2011 10:00 Uhr into the box next to room 34-401.4