Exercises to the Lecture Computer Algebra
 Sheet 4

Prof. Dr. Klaus Madlener
Delivery until 2010/05/14

Exercise 1: [Potenzreihen]

Let F be a field of characteristic 0 . Show: The coefficients $a_{k} \in F$ for $k \geq K$ (K fixed) of a power series $a(x)=\sum_{k=0}^{\infty} a_{k} x^{k}$ can be represented by a linear recurrence relation with constant coefficients $a_{k}=u_{1} a_{k-1}+u_{2} a_{k-2}+\cdots+u_{n} a_{k-n}$ (n fixed) over F iff $a(x)$ is representable as a rational fuction x over F.

Exercise 2: [Pseudo-Restefolgen]

Determine wether the polynomial pseudo remainder series from the lecture can actually be used to calculate the gcd. Show:
If $a(x)$ and $b(x)$ are primitive polynomials over a UFD D and if $f_{1}(x)=a(x), f_{2}(x)=$ $b(x), f_{3}(x), \ldots, f_{k-1}(x), f_{k}(x)$ is a polynomial remainder series for $a(x)$ and $b(x)$, where $f_{k}(x)=0$ then:

$$
\operatorname{gcd}(a(x), b(x))=\operatorname{pp}\left(f_{k-1}(x)\right) .
$$

Exercise 3: [Anwendung]

Let D be a euclidean Ring with valuation ν. Sketch an algortihm according to the following specification:

Input: A positive integer n and $a, d_{1}, \ldots, d_{n} \in D \backslash\{0\}$ with $\operatorname{gcd}\left(d_{i}, d_{j}\right)=1$ for $i \neq j$.
Output: $a_{0}, a_{1}, \ldots, a_{n} \in D$, such that

$$
\frac{a}{d_{1} \cdots d_{n}}=a_{0}+\sum_{i=1}^{n} \frac{a_{i}}{d_{i}}
$$

and either $a_{i}=0$ or $\nu\left(a_{i}\right)<\nu\left(d_{i}\right)$ for $i \geq 1$.
Explain why your algorithm is correct. Have you encountered this algorithm before?

Exercise 4: [Nachrichtenverifikation]

Assume, Alice and bob have Messages of n bit length, M_{A} und M_{B}. They would like to check wether they have identical messages. On the one hand they want to have a high probability for a correct answer, on the other hand they want to reduce communication overhead. In particular, a message exchange is out of question because of the size of n.
Alice and Bob uniformly choose k primes p_{1}, \ldots, p_{k} from the set of the first $2 n$ primes and check if $M_{A} \equiv M_{B} \bmod p_{i}$ for $1 \leq i \leq k$.

Show: If $M_{A}=M_{B}$, then $M_{A} \equiv M_{B} \bmod p_{i}$ for all i. If, however, $M_{A} \neq M_{B}$, then $M_{A} \not \equiv M_{B} \bmod p_{i}$ for an i with a probability of at least $1-2^{-k}$.

Exercise 5: [Karatsuba]
a) Assure yourself that the multiplication algorithm after Karatsuba and Ofman also works for univariate polynomials. Draft a recursive procedure.
b) Prove that this algorithm multiplies tho polynomials of degree at most n (where n be a power of 2) with at most $9 n^{\log _{2} 3}+O(n)$ ring operations.
To this end, show the following lemma:
Let $b, d \in \mathbb{N}$ with $b>0$, and let $S, T: \mathbb{N} \rightarrow \mathbb{N}$ be fuctions with $S(2 n) \geq 2 S(n)$ and $S(n) \geq n$ for all $n \in \mathbb{N}$. If $T(1)=d$ and $T(n) \leq b T(n / 2)+S(n)$ for $n=2^{i}$ and $i \in \mathbb{N}^{+}$, then for all $i \in \mathbb{N}$ and $n=2^{i}$:

$$
T(n) \leq \begin{cases}(2-2 / n) S(n)+d \in O(S(n)) & \text { falls } b=1 \\ S(n) \log _{2} n+d n \in O\left(S(n) \log _{2} n\right) & \text { falls } b=2 \\ \frac{2}{b-2}\left(n^{\log _{2} b-1}-1\right) S(n)+d n^{\log _{2} b} \in O\left(S(n) n^{\log _{2} b-1}\right) & \text { falls } b \geq 3\end{cases}
$$

c) Convince yourself that for small inputs the algorithm after Karatsuba and Ofman is slower that the classical polynomial multiplication algorithm.
Now examine a hybrid algorithm that recursively applies the Karatsuba/Ofmanidea, until the degrees become smaller than some bound $2^{d} \in \mathbb{N}$. Afterwards it uses classical multiplication.
Show that this hybrid algorithm requires at most $\gamma(d) n^{\log _{2} 3}+O(n)$ ring operations, where $\gamma(d)$ only depends on d. Find a d, such that $\gamma(d)$ is minimal. (You will need a rather exact estimation of the number of ring operations for the classical multiplication algorithm.)

