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“The intuition behind refinement”
• “The intuition behind refinement is just the following:

Principle of Substitutivity: it is acceptable to replace 
one program by another, provided it is impossible for 
a user of the programs to observe that the 
substitution has taken place.” [Derrick&Boiten 2001, pg.47]

• Why should “acceptable” refinements be restricted to 
those which guarantee that the substitution of one 
program by a refined one is not observable?
– e.g. imagine one wants to 

• observe the desired improvement provided by a refinement (an 
executable instead of an abstract pgm, a faster or more general
pgm serving also other purposes, a strengthening…)

• delimit the exact boundaries within which the refined program 
performs in the intended way
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Characteristics of refinement notions in the literature

• Traditionally, refinement notions guided by the
substitutivity principle come with additional restrictive 
assumptions:
– programs describe sequences of operations

• precluding parallelism of multiple simultaneous updates 
or iterative compositions of programs

– operations are global (binary) state relations
• yielding the frame problem for combinations of local 

effects 

– observations are pairs of input/output sequences or 
of pre-post-states representing what is considered 
to be of interest before/after program execution

• making it difficult to look at arbitrary segments of 
computation
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Role of syntactical issues in refinement notions in the literature

– numerous program refinement notions (e.g. for 
ADT, Z) are formulated for structurally equivalent 
programs with corresponding operations in the 
same places

• precluding the analysis of more complex relations bw
operations

– invariants in refinements are often viewed as 
changing the state scheme or the operations, in 
terms of pre/post condition strengthenings or 
weakenings

• instead of analysing their effect as restricting the class of 
models
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Role of syntactical issues in refinement notions in the literature

• most refinement notions are logic or proof-rule 
oriented, tailored to fit proof principles  [de
Roever&Engelhardt]
– spec perceived as a (huge!) logical expression
– implementation understood as implication
– composition defined as conjunction

• thus possibly restricting the design space 
• e.g. refinements should be pre-congruences: for every 

context C: x ≤ y  implies C[x] ≤ C[y]. This can be 
achieved for example by monotonicity of pgm 
constructors wrt refinement.

» commits to uniform context-independent “algebraic”
refinements

• e.g. operation refinement by combining multiple 
operations “conjunctively” or “disjunctively” (“alphabet 
translation”)
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Linking refinement and proof principles illustrated by B
• B links design & proofs by relating pgm constructs & 

proof principles at the price of restricting the design space
• Machine inclusion example (B-Book pg.317))

– Let M include M’. Then “at most one operation of the included 
machine can be called from within an operation of the 
including machine. Otherwise we could break the invariant 
of the included machine.”

– Let M’ have the following operations, satisfying the invariant v ≤ w :

• increment ≡ If v < w then v := v+1

• decrement ≡ If v < w then w := w-1

– Let M include M’ and contain the following operation:
• If v<w then increment

decrement

– Then the invariant v ≤ w is broken by M for w = v+1
• The ASM method allows parallel invocations of submachines 

– at the price of having to care about the correctness proofs
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Linking refinement and proof principles illustrated by CSP

• CSP links design & proofs by relating pgm
constructs & proof principles at the price of
restricting the design space

• Refining processes by adding assignment is 
restricted to certain assignments (Hoare CSP Book 
1985, pg. 188)):

• When two processes P and Q are put into 
parallel, it is required that the variables P 
assigns to are disjoint from the variables of Q: 

• Write(P) ∩ Var(Q) = ∅

– Otherwise the CSP laws would not work
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Introducing refinement techniques into ASMs
• Refinements, one of the 3 building blocks of the ASM 

method, were introduced into ASMs in 1989 through 
Börger’s ASM models defining the ISO Prolog 
standard, triggered by the simple observation that 
exploiting the freedom of abstraction ASMs offer,
one can tailor ASM refinements to solve given design 
& analysis problems also for complex real-life systems 
as they occur in industrial practice

• Consequently, the  ASM refinement method is 
problem-oriented and its development was driven by 
– practical refinement tasks, occurring in real-life system development

– the goal to support divide-and-conquer techniques for both design 
and verification without privileging one to the detriment of the other

See E. Börger: The Origins and the Development of the ASM Method for High Level

System Design and Analysis. JUCS 8 (1) 2001
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Problem oriented tasks guiding the ASM refinement method
• In each case, “listen to the subject” to find/formulate 

an appropriate refinement /abstraction that
– faithfully reflects the intended  design decision (or 

reengineering idea) for the system under study
– can be justified to correctly implement the given model (or to 

abstract from the given code), namely through 
• verification
• validation testing model-based runtime assertions to show by 

simulation that design assumptions hold in the implementation

• Effect (scaling to industrial-size systems): enhancement of
– communication of designs and system documentation (report 

of analysis) 

– effective reuse  (exploiting orthogonalities, hierarchical layers)

– system maintenance based upon accurate, precise, richly 
indexed & easily searchable documentation                    

E.Börger: High Level System Design and Analysis using ASMs 
LNCS 1012 (1999) 1-43
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Main usages of ASM refinements
• capture orthogonalities by modular machines (components)

– e.g. ASMs for sublanguages of Java and JVM instructions

• construct hierarchical levels for
– horizontal piecemeal extensions and adaptations (design for change)

• e.g. of ISO Prolog model by constraints (Prolog III), polymorphism (Protos-L), 
narrowing (Babel), object-orientation (Müller), parallelism (Parlog, Concurrent 
Prolog etc), abstract execution strategy (Gödel) 

– vertical stepwise detailing of models (design for reuse) in a proven to be 
correct way down to their implementation, e.g. model chains leading from 

• Prolog to WAM
• Occam to Transputer 
• Java to JVM 
• ASMs to executable ASMs (Workbench, AsmGofer, AsmL, XASM)

• exploit reusable proof techniques for system properties 
• e.g. reusing Prolog to WAM proof for

– CLP(R) to CLAM
– Protos-L to PAM

• using variety of logics for ASMs, KIV, PVS, Isabelle, model checkers 
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Examples of ASM Refinement & Verification Hierarchies

Architectures: Pipelining of RISC DLX: model checking, PVS verification

Control Systems: Production Cell (model checked), Steam Boiler 
(refinements to C++ code)   Light Control (executable requirements model)

Compiler correctness
ISO Prolog to WAM: 12 refinement steps, KIV verified
backtracking, structure of predicates, structure of clauses, structure of 

terms & substitution, optimizations

Occam to Transputer :15 models exhibiting channels,
sequentialization of parallel procedures, pgm ctrl structure, env, transputer 
datapath and  workspace, relocatable code (relative instr addresses & 
resolving labels)

Java to JVM: language and security driven decomposition into 

5 horizontal sublanguage levels (imperative, modules, oo, exceptions, 
concurrency) and 
4 vertical JVM levels for trustful execution, checking defensively at run time 
and  diligently at link time, loading (modular compositional structuring)
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Illustrating Reusability of ASM Refinement Hierarchies

Reuse of submachines (layered components) and of lemmas

OUP 95
CLP(R) IBM-CLAM

JAVA JVM
Java/JVM Book 2001

OCCAM TRANSPUTER
Comp.J. 96

PROLOG WAM
SCP 95

FACS 96
PROTOS-L IBM-PAM
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The ASM Refinement Scheme: Commuting Diagrams

State
τ1 …τm State’

≡

with an equivalence notion ≡ definable to relate
• the locations of interest (“corresponding locations”)
• in states of interest (“corresponding states”)
• reached by (m,n) computation segments of interest

State* State*’
σ1 …σn

ref absabs ref

combining change of signature (data in locations) & of control 
(flow of operations), generalizing data refinements, (1,n)-refinements,
I/O automata refinements (by forward or backward simulations), etc.
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Defining correctness of a refinement M* of M

• Fix any notions ≡ of equivalence of states & of initial/final states
• Idea of correctness: refined runs simulate abstract ones

• Definition. M* is a correct refinement of M iff 
every (infinite) refined run simulates an (infinite)    
abstract run with equivalent corresponding states
– i.e. for each M*-run S*(0), S*(1),… there is an M-run 

S(0), S(1),… , either both terminating or both 
infinite, with infinite sequences i0< i1<…, j0< j1<…
such that S(ik) ≡ S*(jk) for each k, including the initial 
states (i0 = j0 =0)  and the final ones (if any) 

• Wlog at final states, the state sequence becomes constant            
i.e. S(r) = S(r+k) for each final S(r) and each k, same for S*
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Completeness condition for ASM refinements

• Completeness idea: abstract runs are simulated by 
(correspond to) refined ones, symmetrically to how for 
correctness refined runs simulate (correspond to) abstract 
ones 

• Def. M* is a complete refinement of M  
iff M is a correct refinement of M*

• Related terminology:
– “bisimulation” or “interpreter equivalence” for correct and complete 

refinement (wrt terminating runs considering only the input/output 
behavior)

– “preservation of partial correctness” for correct refinement (wrt
terminating runs)

– “preservation of total correctness” for complete refinement (adding to 
the correctness condition for terminating runs that every infinite refined 
run admits an infinite abstract run with an equivalent initial state)
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Remarks on the correctness conditions for ASM refinements

• Corollary. Refinement correctness implies for 
terminating runs the equivalence of the input/output 
behavior of the abstract and the refined machine.

• S(ik), S*(jk) are the corresponding states (those of 
interest), end points of the corresponding computation 
segments (those of interest), for which the 
equivalence is defined in terms of a relation between 
their corresponding locations (those of interest).

• Wlog the sequences of corresponding states are
minimal in the sense that between two sequence 
elements there are no other equivalent states
– i.e. there are no ik<i< ik+1  , jk<j< ik+1 with S(i) ≡ S*(j)
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Refinement notions in the literature as cases of ASM refinements

• Considering only the input/output behavior, restricting 
correctness (essentially) to terminating runs 
– e.g. preservation of partial/total correctness (as used in compiler 

correctness verifications) or bisimulation

• Data refinement considering as initial/final the pre/post states 
of an operation
– (1,1)-refinements for corresponding operations (with unchanged 

signature, tailored to provide “unchanged” properties)
• forward simulation carries over ≡ from pre-states to post-states
• backward simulation carries over ≡ from post-states to pre-states
• see Hoare 1972, VDM, Z, B, de Roever & Engelhardt 1998

– NB. Under a monolithic view (of each ASM as defining just one total 
operation on structures), ASM refinement becomes data refinement

• Non-atomic operation refinement
– (1,n)-refinements with fixed n (in Z, Object-Z, see Derrick & Boiten 2001)
– (1,1)-refinements for external operations with (1,0),(0,1)-refinements for 

finitely many invisible internal operations
– alphabet extension/translation,  I/O automata refinements,  etc.

see details in [Schellhorn2001]
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Conservative ASM refinement: incrementally adding machines

• Adding an entire machine M - not limited to a single 
“operation” - to another machine
Exl. Adding a bytecode verifier to the Java interpreter in JVM

trustfulVM

• verifyVM itself is defined from submachines check,
propagateVM, succ by a parallel ASM refinement which follows 
the language extensions for the JVM 

verifyVM

some meth still 
to be verified

yes
no

report 
failure

upon 
violation no

yes
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Procedural refinements & their specialization to 
sequential submachine refinements of ctl state ASMs

Procedural refinement: replacing a machine by another 
(usually more complex) machine

Specialization for control state ASMs: replacing control 
state transitions (machines at nodes) by
submachine diagrams with entry/exit nodes

The Scheme:

ji k1 kn

rulei j ⇒

…
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Illustrating sequential submachine refinements 
refining the control state ASM model for a debugger

onNonEmpty

EventQueue

RunQ
onAnyEvent

Break Run

onBreakingCommand

onRunningCommand

onStoppingEvent

OnNonStoppingEvent

TryToBreak

onEmptyEventQueue

Init

onExit

onStart

Slide courtesy 
M. Barnett
M. Veanes
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debugger

Init

initializeCOM

Sequential submachine refinement of machine onStart 
into a sequence of three submachines

createNewShell

Break

setDbgCallback

env

Env
Process=Null
Thread =Null
Frame  =Null

…
BPs    ={}

Shell

dbg services

callbacks

Break

initializeCOM createNewShell setDbgCallback

Slide courtesy 
M. Barnett
M. Veanes
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Parallel and sequential refinement of callback(LoadModule)

callback(LoadModule (proc,mod)) = 
displayMessage("Loaded module: " ++ mod.name())       record mod in shell
forall bp in shell.BPs               bind all breakpoints to the mod (in any order)

bp.bind(mod)
seq

mod.enableClassLoadCallbacks() 
proc.resume()                                    continue via external call

Analogously for UnloadModule

Run

Resume execution

Enable class load 
callbacks

Display message

Try to bind bp1

Try top bind bn

Slide courtesy 
M. Barnett
M. Veanes
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(1,1)-refinements of ASMs allow parallelism
• replacing an action - part of a parallel step, not 

limited to a single “operation” - by multiple parallel 
actions  (not viewed as a new “operation”, but as part 
of a new parallel step) e. g. rule by rule1 … rulen

Exl. Defining submachine execJava of execJavaThread
by parallel submachines 

separating semantics of thread execution from thread scheduling

execJavat is curr Active thread

Choose t in ExecRunnableThread

suspend thread
resume t yesno
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(1,1)-refinement of execJava as parallel composition 
of language driven submachines 

execJava = 

execJavaI imperative control constructs

execJavaO oo features

execJavaE                  exception handling

execJavaT                  concurrent threads

where each execJavasub = 

execJavaExpsub expression evaluation

execJavaStmsub statement execution

allowing semantics to be defined instructionwise
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Backtracking Machine (for Tree Computations)

• If mode = ramify then
Let k = |alternatives (Params)|              
Let o1 ,..., ok =new (NODE)

candidates (currnode) := { o1 ,..., ok }
forall 1 ≤ i ≤ k  do  

parent (oi) := currnode
env (oi) := i-th (alternatives (Params))

mode := select

• If mode = select then
If candidates (currnode) = ∅

then backtrack
else try-next-candidate

mode := execute

curr
node

o1 ok

candidates

parent

curr
node

o1 ok
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Backtracking Machine

• backtrack ≡ if parent (currnode) = root 
then mode := Stop
else currnode := parent (currnode)

• try-next-candidate ≡ depth-first tree traversal
currnode:= next (candidates(currnode))
delete next (candidates(currnode)) from candidates (currnode)

• The fctn next is a choice fct, possibly dynamic, which 
determines the order for trying out the alternatives.

• The fct alternatives, possibly dynamic and coming with 
parameters, determines the solution space.

• The execution machine may update mode again to ramify (in 
case of successful exec) or to select (for failed exec)
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Backtracking Machine: logic instantiation
• Prolog  Börger/Rosenzweig Science of Computer Programming 24 (1995)

– alternatives = procdef (act,pgm), yielding a 
sequence of clauses in pgm, to be tried out in this 
order to execute the current statement (“goal”) act

• procdef (act,constr,pgm) in CLAM with constraints for 
indexing mechanism                  Börger/Salamone OUP 1995

– next = first-of-sequence (depth-first left-to-right tree 
traversal)

– execute mode resolves act against the head of the 
next candidate, if possible, replacing act by that 
clauses’ body & proceeding in mode ramify, 
otherwise it deletes that candidate & switches to 
mode select
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Backtracking Machine: functioal progg instantiation
• Babel           Börger et al. IFIP 13 World Computer Congress 1994, Vol.I

– alternatives = fundef (currexp,pgm), yielding the 
list of defining rules provided in pgm for the outer 
fct of currexp

– next = first-of-sequence
– execute applies the defining rules in the given 

order to reduce currexp to normal form (using 
narrowing, a combination of unification and 
reduction)
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Backtracking Machine: context free grammar instantiation
• Generating leftmost derivations of cf grammars G

– alternatives (currnode,G), yields sequence of symbols 
Y1...Yk of the  conclusion of a G-rule with premisse X 
labeling currnode. Includes a choice bw different rules X→w

– env yields the label of a node: variable X or terminal letter a
– next = first-of-sequence (depth-first left-to-right tree traversal)
– execute mode 

• for nodes labeled by a variable triggers tree expansion
• for terminal nodes extracts the yield, concatenating terminal word to 

output, continues derivation at parent node in mode select

Initially NODE = {root} 
root=currnode

env(root)=G-axiom
mode=ramify

alternatives can be a  
dynamic fct (possibly 

monitored by the user) or 
static (with first argument 

in VAR)

If mode = execute then
If env (currnode)∈VAR 

then mode:=ramify                      
else output:=output * env(currnode) 

currnode:= parent(currnode)                
mode := select
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Backtracking Machine: instantiation  for attribute grammars
• Synthesis of node attribute from children’s attributes via

backtrack ≡ if parent (currnode) = root  then mode := Stop

else currnode := parent (currnode)
X.a := f(Y1.a1, ..., Yk.ak)

• where X = env(parent(currnode)), Yi =env(oi ) for children nodes

• Inheriting attribute from parent and siblings
– included in update of env (e.g. upon node creation) 

generalized to update also node attributes 

• Attribute conditions for grammar rules
– included in execute-rules as additional guard to yielding 

output 

If mode = execute then ...
else If Cond(currnode.a, parent(currnode).b, siblings(currnode).c)

then output:=output * env(currnode) 
currnode:= parent(currnode) , mode := select

Johnson/
Moss 

Linguistics
&Philosophy 
17 (1994) 
537-560
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X

m
k-thChild

X

p
j-thChild

X

Tree Adjoining Grammars
Generalizing Parikh’s analysis of context free languages by 

pumping of cf trees from basis trees (with terminal yield) and 
recursion trees (with terminal yield except for the root variable)

If n=k-thChild(m) &
symb(n)=symb(root(T)) 

& T ∈ RecTree &
foot(T) = j-thChild(p) 

Then

Let T’=new copy(T) in
k-thChild(m):=root(T’)

j-thChild(p’):=n 

m
k-thChild

X

p
j-thChild

X
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Looking for invariants to prove ASM refinement correctness 

• Idea: find commuting diagrams with end points s, s*

which satisfy an invariant ≈ implying the to be 
established equivalence ≡

• Realization: for each pair of corresponding states -
not both final - satisfying ≈, follow the two runs to find 
a successor pair s’, s*’ (of corresponding states 
satisfying ≈)

• Two cases are possible for such run extensions:
– only one of the two runs can be extended

• the abstract one, producing an (m,0)-diagram
• the refined one, producing a (0,n)-diagram

– both runs can be extended
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Extending runs by triangles and trapezoids 

s’. . .

s*’. . .

s*’. . .

s’. . .

≈

s

s*

≈(m,0)-triangle: comp segment 
leading in m>0 steps to an s’≈s*

s

s*

≈(0,n)-triangle: comp segment 
leading in n>0 steps to an s*’≈s

s

s*

≈

(m,n)-trapezoid: computation
segment leading 

in m>0 steps to an s’
in n>0 steps to an s*’

such that s’≈s*’
where m>n or m=n or m<n 
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Definition of the forward simulation condition FSC(s,s*)

If s ≈ s* and not both s,s* are final states, then
• either the abstract run can be extended 

by an (m,0)-triangle
leading in m>0 steps to an s’≈s* with (s’,s*) <m0 (s,s*)

• or the refined run can be extended 
by a (0,n)-triangle
leading in n>0 steps to an s*’≈s with (s,s*’) <0n (s,s*)

• or both runs can be extended 
by an (m,n)-trapezoid leading 

in m>0 abstract steps to an s’

in n>0 refined steps to an s*’
such that s’≈s*’

NB. A minor modification covers also nondeterministic ASMs

applying triangles 
successively

must be well-founded
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Schellhorn’s coupling invariant for correct ASM refinements

Theorem. M* is a correct refinement of M 
wrt an equivalence notion ≡ and a notion of initial/final states

if there is a relation ≈ such that
• the coupling invariant ≈ implies equivalence  ≡
• each refined initial state s* is coupled by the 

invariant to an abstract initial state s≈s*
• the forward simulation condition FSC holds for

every pair (s,s*) of abstract and refined states

This theorem constitutes the basis of: 
G. Schellhorn, W. Ahrendt: The WAM Case Study: Verifying Compiler Correctness for 

Prolog with KIV. In W.Bibel, P. Schmitt (Eds): Automated Deduction – A Basis for 
Applications. Vol.3, Ch.3, Kluwer 1998

G. Schellhorn, W. Ahrendt: Reasoning About Abstract State Machines: The WAM 
Case Study. JUCS 3 (4) 1997, 377-413 
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Exercise

• Prove that in the correctness definition of ASM 
refinements one can assume without loss of 
generality that the sequences of corresponding 
states are minimal, in the sense that between two 
sequence elements there are no other equivalent 
states
– i.e. there are no ik<i< ik+1  , jk<j< ik+1 with S(i) ≡ S*(j)
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