
Refinement Method
for Abstract State Machines

Egon Börger

Dipartimento di Informatica, Universita di Pisa
http://www.di.unipi.it/~boerger

© Egon Börger: ASM Refinement Techniques 2

E. Börger, R. Stärk

Abstract State Machines

A Method for High-Level System Design and Analysis

Springer-Verlag 2003

For update info see AsmBook web page:

http://www.di.unipi.it/AsmBook

For details see Chapter 3.2 (Incremental Design by
Refinements) of:

© Egon Börger: ASM Refinement Techniques 3

“The intuition behind refinement”
• “The intuition behind refinement is just the following:

Principle of Substitutivity: it is acceptable to replace
one program by another, provided it is impossible for
a user of the programs to observe that the
substitution has taken place.” [Derrick&Boiten 2001, pg.47]

• Why should “acceptable” refinements be restricted to
those which guarantee that the substitution of one
program by a refined one is not observable?
– e.g. imagine one wants to

• observe the desired improvement provided by a refinement (an
executable instead of an abstract pgm, a faster or more general
pgm serving also other purposes, a strengthening…)

• delimit the exact boundaries within which the refined program
performs in the intended way

© Egon Börger: ASM Refinement Techniques 4

Characteristics of refinement notions in the literature

• Traditionally, refinement notions guided by the
substitutivity principle come with additional restrictive
assumptions:
– programs describe sequences of operations

• precluding parallelism of multiple simultaneous updates
or iterative compositions of programs

– operations are global (binary) state relations
• yielding the frame problem for combinations of local

effects

– observations are pairs of input/output sequences or
of pre-post-states representing what is considered
to be of interest before/after program execution

• making it difficult to look at arbitrary segments of
computation

© Egon Börger: ASM Refinement Techniques 5

Role of syntactical issues in refinement notions in the literature

– numerous program refinement notions (e.g. for
ADT, Z) are formulated for structurally equivalent
programs with corresponding operations in the
same places

• precluding the analysis of more complex relations bw
operations

– invariants in refinements are often viewed as
changing the state scheme or the operations, in
terms of pre/post condition strengthenings or
weakenings

• instead of analysing their effect as restricting the class of
models

© Egon Börger: ASM Refinement Techniques 6

Role of syntactical issues in refinement notions in the literature

• most refinement notions are logic or proof-rule
oriented, tailored to fit proof principles [de
Roever&Engelhardt]
– spec perceived as a (huge!) logical expression
– implementation understood as implication
– composition defined as conjunction

• thus possibly restricting the design space
• e.g. refinements should be pre-congruences: for every

context C: x ≤ y implies C[x] ≤ C[y]. This can be
achieved for example by monotonicity of pgm
constructors wrt refinement.

» commits to uniform context-independent “algebraic”
refinements

• e.g. operation refinement by combining multiple
operations “conjunctively” or “disjunctively” (“alphabet
translation”)

© Egon Börger: ASM Refinement Techniques 7

Linking refinement and proof principles illustrated by B
• B links design & proofs by relating pgm constructs &

proof principles at the price of restricting the design space
• Machine inclusion example (B-Book pg.317))

– Let M include M’. Then “at most one operation of the included
machine can be called from within an operation of the
including machine. Otherwise we could break the invariant
of the included machine.”

– Let M’ have the following operations, satisfying the invariant v ≤ w :

• increment ≡ If v < w then v := v+1

• decrement ≡ If v < w then w := w-1

– Let M include M’ and contain the following operation:
• If v<w then increment

decrement

– Then the invariant v ≤ w is broken by M for w = v+1
• The ASM method allows parallel invocations of submachines

– at the price of having to care about the correctness proofs

© Egon Börger: ASM Refinement Techniques 8

Linking refinement and proof principles illustrated by CSP

• CSP links design & proofs by relating pgm
constructs & proof principles at the price of
restricting the design space

• Refining processes by adding assignment is
restricted to certain assignments (Hoare CSP Book
1985, pg. 188)):

• When two processes P and Q are put into
parallel, it is required that the variables P
assigns to are disjoint from the variables of Q:

• Write(P) ∩ Var(Q) = ∅

– Otherwise the CSP laws would not work

© Egon Börger: ASM Refinement Techniques 9

Introducing refinement techniques into ASMs
• Refinements, one of the 3 building blocks of the ASM

method, were introduced into ASMs in 1989 through
Börger’s ASM models defining the ISO Prolog
standard, triggered by the simple observation that
exploiting the freedom of abstraction ASMs offer,
one can tailor ASM refinements to solve given design
& analysis problems also for complex real-life systems
as they occur in industrial practice

• Consequently, the ASM refinement method is
problem-oriented and its development was driven by
– practical refinement tasks, occurring in real-life system development

– the goal to support divide-and-conquer techniques for both design
and verification without privileging one to the detriment of the other

See E. Börger: The Origins and the Development of the ASM Method for High Level

System Design and Analysis. JUCS 8 (1) 2001

© Egon Börger: ASM Refinement Techniques 10

Problem oriented tasks guiding the ASM refinement method
• In each case, “listen to the subject” to find/formulate

an appropriate refinement /abstraction that
– faithfully reflects the intended design decision (or

reengineering idea) for the system under study
– can be justified to correctly implement the given model (or to

abstract from the given code), namely through
• verification
• validation testing model-based runtime assertions to show by

simulation that design assumptions hold in the implementation

• Effect (scaling to industrial-size systems): enhancement of
– communication of designs and system documentation (report

of analysis)

– effective reuse (exploiting orthogonalities, hierarchical layers)

– system maintenance based upon accurate, precise, richly
indexed & easily searchable documentation

E.Börger: High Level System Design and Analysis using ASMs
LNCS 1012 (1999) 1-43

© Egon Börger: ASM Refinement Techniques 11

Main usages of ASM refinements
• capture orthogonalities by modular machines (components)

– e.g. ASMs for sublanguages of Java and JVM instructions

• construct hierarchical levels for
– horizontal piecemeal extensions and adaptations (design for change)

• e.g. of ISO Prolog model by constraints (Prolog III), polymorphism (Protos-L),
narrowing (Babel), object-orientation (Müller), parallelism (Parlog, Concurrent
Prolog etc), abstract execution strategy (Gödel)

– vertical stepwise detailing of models (design for reuse) in a proven to be
correct way down to their implementation, e.g. model chains leading from

• Prolog to WAM
• Occam to Transputer
• Java to JVM
• ASMs to executable ASMs (Workbench, AsmGofer, AsmL, XASM)

• exploit reusable proof techniques for system properties
• e.g. reusing Prolog to WAM proof for

– CLP(R) to CLAM
– Protos-L to PAM

• using variety of logics for ASMs, KIV, PVS, Isabelle, model checkers

© Egon Börger: ASM Refinement Techniques 12

Examples of ASM Refinement & Verification Hierarchies

Architectures: Pipelining of RISC DLX: model checking, PVS verification

Control Systems: Production Cell (model checked), Steam Boiler
(refinements to C++ code) Light Control (executable requirements model)

Compiler correctness
ISO Prolog to WAM: 12 refinement steps, KIV verified
backtracking, structure of predicates, structure of clauses, structure of

terms & substitution, optimizations

Occam to Transputer :15 models exhibiting channels,
sequentialization of parallel procedures, pgm ctrl structure, env, transputer
datapath and workspace, relocatable code (relative instr addresses &
resolving labels)

Java to JVM: language and security driven decomposition into

5 horizontal sublanguage levels (imperative, modules, oo, exceptions,
concurrency) and
4 vertical JVM levels for trustful execution, checking defensively at run time
and diligently at link time, loading (modular compositional structuring)

© Egon Börger: ASM Refinement Techniques 13

Illustrating Reusability of ASM Refinement Hierarchies

Reuse of submachines (layered components) and of lemmas

OUP 95
CLP(R) IBM-CLAM

JAVA JVM
Java/JVM Book 2001

OCCAM TRANSPUTER
Comp.J. 96

PROLOG WAM
SCP 95

FACS 96
PROTOS-L IBM-PAM

© Egon Börger: ASM Refinement Techniques 14

The ASM Refinement Scheme: Commuting Diagrams

State
τ1 …τm State’

≡

with an equivalence notion ≡ definable to relate
• the locations of interest (“corresponding locations”)
• in states of interest (“corresponding states”)
• reached by (m,n) computation segments of interest

State* State*’
σ1 …σn

ref absabs ref

combining change of signature (data in locations) & of control
(flow of operations), generalizing data refinements, (1,n)-refinements,
I/O automata refinements (by forward or backward simulations), etc.

© Egon Börger: ASM Refinement Techniques 15

Defining correctness of a refinement M* of M

• Fix any notions ≡ of equivalence of states & of initial/final states
• Idea of correctness: refined runs simulate abstract ones

• Definition. M* is a correct refinement of M iff
every (infinite) refined run simulates an (infinite)
abstract run with equivalent corresponding states
– i.e. for each M*-run S*(0), S*(1),… there is an M-run

S(0), S(1),… , either both terminating or both
infinite, with infinite sequences i0< i1<…, j0< j1<…
such that S(ik) ≡ S*(jk) for each k, including the initial
states (i0 = j0 =0) and the final ones (if any)

• Wlog at final states, the state sequence becomes constant
i.e. S(r) = S(r+k) for each final S(r) and each k, same for S*

© Egon Börger: ASM Refinement Techniques 16

Completeness condition for ASM refinements

• Completeness idea: abstract runs are simulated by
(correspond to) refined ones, symmetrically to how for
correctness refined runs simulate (correspond to) abstract
ones

• Def. M* is a complete refinement of M
iff M is a correct refinement of M*

• Related terminology:
– “bisimulation” or “interpreter equivalence” for correct and complete

refinement (wrt terminating runs considering only the input/output
behavior)

– “preservation of partial correctness” for correct refinement (wrt
terminating runs)

– “preservation of total correctness” for complete refinement (adding to
the correctness condition for terminating runs that every infinite refined
run admits an infinite abstract run with an equivalent initial state)

© Egon Börger: ASM Refinement Techniques 17

Remarks on the correctness conditions for ASM refinements

• Corollary. Refinement correctness implies for
terminating runs the equivalence of the input/output
behavior of the abstract and the refined machine.

• S(ik), S*(jk) are the corresponding states (those of
interest), end points of the corresponding computation
segments (those of interest), for which the
equivalence is defined in terms of a relation between
their corresponding locations (those of interest).

• Wlog the sequences of corresponding states are
minimal in the sense that between two sequence
elements there are no other equivalent states
– i.e. there are no ik<i< ik+1 , jk<j< ik+1 with S(i) ≡ S*(j)

© Egon Börger: ASM Refinement Techniques 18

Refinement notions in the literature as cases of ASM refinements

• Considering only the input/output behavior, restricting
correctness (essentially) to terminating runs
– e.g. preservation of partial/total correctness (as used in compiler

correctness verifications) or bisimulation

• Data refinement considering as initial/final the pre/post states
of an operation
– (1,1)-refinements for corresponding operations (with unchanged

signature, tailored to provide “unchanged” properties)
• forward simulation carries over ≡ from pre-states to post-states
• backward simulation carries over ≡ from post-states to pre-states
• see Hoare 1972, VDM, Z, B, de Roever & Engelhardt 1998

– NB. Under a monolithic view (of each ASM as defining just one total
operation on structures), ASM refinement becomes data refinement

• Non-atomic operation refinement
– (1,n)-refinements with fixed n (in Z, Object-Z, see Derrick & Boiten 2001)
– (1,1)-refinements for external operations with (1,0),(0,1)-refinements for

finitely many invisible internal operations
– alphabet extension/translation, I/O automata refinements, etc.

see details in [Schellhorn2001]

© Egon Börger: ASM Refinement Techniques 19

Conservative ASM refinement: incrementally adding machines

• Adding an entire machine M - not limited to a single
“operation” - to another machine
Exl. Adding a bytecode verifier to the Java interpreter in JVM

trustfulVM

• verifyVM itself is defined from submachines check,
propagateVM, succ by a parallel ASM refinement which follows
the language extensions for the JVM

verifyVM

some meth still
to be verified

yes
no

report
failure

upon
violation no

yes

© Egon Börger: ASM Refinement Techniques 20

Procedural refinements & their specialization to
sequential submachine refinements of ctl state ASMs

Procedural refinement: replacing a machine by another
(usually more complex) machine

Specialization for control state ASMs: replacing control
state transitions (machines at nodes) by
submachine diagrams with entry/exit nodes

The Scheme:

ji k1 kn

rulei j ⇒

…

© Egon Börger: ASM Refinement Techniques 21

Illustrating sequential submachine refinements
refining the control state ASM model for a debugger

onNonEmpty

EventQueue

RunQ
onAnyEvent

Break Run

onBreakingCommand

onRunningCommand

onStoppingEvent

OnNonStoppingEvent

TryToBreak

onEmptyEventQueue

Init

onExit

onStart

Slide courtesy
M. Barnett
M. Veanes

© Egon Börger: ASM Refinement Techniques 22

debugger

Init

initializeCOM

Sequential submachine refinement of machine onStart
into a sequence of three submachines

createNewShell

Break

setDbgCallback

env

Env
Process=Null
Thread =Null
Frame =Null

…
BPs ={}

Shell

dbg services

callbacks

Break

initializeCOM createNewShell setDbgCallback

Slide courtesy
M. Barnett
M. Veanes

© Egon Börger: ASM Refinement Techniques 23

Parallel and sequential refinement of callback(LoadModule)

callback(LoadModule (proc,mod)) =
displayMessage("Loaded module: " ++ mod.name()) record mod in shell
forall bp in shell.BPs bind all breakpoints to the mod (in any order)

bp.bind(mod)
seq

mod.enableClassLoadCallbacks()
proc.resume() continue via external call

Analogously for UnloadModule

Run

Resume execution

Enable class load
callbacks

Display message

Try to bind bp1

Try top bind bn

Slide courtesy
M. Barnett
M. Veanes

© Egon Börger: ASM Refinement Techniques 24

(1,1)-refinements of ASMs allow parallelism
• replacing an action - part of a parallel step, not

limited to a single “operation” - by multiple parallel
actions (not viewed as a new “operation”, but as part
of a new parallel step) e. g. rule by rule1 … rulen

Exl. Defining submachine execJava of execJavaThread
by parallel submachines

separating semantics of thread execution from thread scheduling

execJavat is curr Active thread

Choose t in ExecRunnableThread

suspend thread
resume t yesno

© Egon Börger: ASM Refinement Techniques 25

(1,1)-refinement of execJava as parallel composition
of language driven submachines

execJava =

execJavaI imperative control constructs

execJavaO oo features

execJavaE exception handling

execJavaT concurrent threads

where each execJavasub =

execJavaExpsub expression evaluation

execJavaStmsub statement execution

allowing semantics to be defined instructionwise

© Egon Börger: ASM Refinement Techniques 26

Backtracking Machine (for Tree Computations)

• If mode = ramify then
Let k = |alternatives (Params)|
Let o1 ,..., ok =new (NODE)

candidates (currnode) := { o1 ,..., ok }
forall 1 ≤ i ≤ k do

parent (oi) := currnode
env (oi) := i-th (alternatives (Params))

mode := select

• If mode = select then
If candidates (currnode) = ∅

then backtrack
else try-next-candidate

mode := execute

curr
node

o1 ok

candidates

parent

curr
node

o1 ok

© Egon Börger: ASM Refinement Techniques 27

Backtracking Machine

• backtrack ≡ if parent (currnode) = root
then mode := Stop
else currnode := parent (currnode)

• try-next-candidate ≡ depth-first tree traversal
currnode:= next (candidates(currnode))
delete next (candidates(currnode)) from candidates (currnode)

• The fctn next is a choice fct, possibly dynamic, which
determines the order for trying out the alternatives.

• The fct alternatives, possibly dynamic and coming with
parameters, determines the solution space.

• The execution machine may update mode again to ramify (in
case of successful exec) or to select (for failed exec)

© Egon Börger: ASM Refinement Techniques 28

Backtracking Machine: logic instantiation
• Prolog Börger/Rosenzweig Science of Computer Programming 24 (1995)

– alternatives = procdef (act,pgm), yielding a
sequence of clauses in pgm, to be tried out in this
order to execute the current statement (“goal”) act

• procdef (act,constr,pgm) in CLAM with constraints for
indexing mechanism Börger/Salamone OUP 1995

– next = first-of-sequence (depth-first left-to-right tree
traversal)

– execute mode resolves act against the head of the
next candidate, if possible, replacing act by that
clauses’ body & proceeding in mode ramify,
otherwise it deletes that candidate & switches to
mode select

© Egon Börger: ASM Refinement Techniques 29

Backtracking Machine: functioal progg instantiation
• Babel Börger et al. IFIP 13 World Computer Congress 1994, Vol.I

– alternatives = fundef (currexp,pgm), yielding the
list of defining rules provided in pgm for the outer
fct of currexp

– next = first-of-sequence
– execute applies the defining rules in the given

order to reduce currexp to normal form (using
narrowing, a combination of unification and
reduction)

© Egon Börger: ASM Refinement Techniques 30

Backtracking Machine: context free grammar instantiation
• Generating leftmost derivations of cf grammars G

– alternatives (currnode,G), yields sequence of symbols
Y1...Yk of the conclusion of a G-rule with premisse X
labeling currnode. Includes a choice bw different rules X→w

– env yields the label of a node: variable X or terminal letter a
– next = first-of-sequence (depth-first left-to-right tree traversal)
– execute mode

• for nodes labeled by a variable triggers tree expansion
• for terminal nodes extracts the yield, concatenating terminal word to

output, continues derivation at parent node in mode select

Initially NODE = {root}
root=currnode

env(root)=G-axiom
mode=ramify

alternatives can be a
dynamic fct (possibly

monitored by the user) or
static (with first argument

in VAR)

If mode = execute then
If env (currnode)∈VAR

then mode:=ramify
else output:=output * env(currnode)

currnode:= parent(currnode)
mode := select

© Egon Börger: ASM Refinement Techniques 31

Backtracking Machine: instantiation for attribute grammars
• Synthesis of node attribute from children’s attributes via

backtrack ≡ if parent (currnode) = root then mode := Stop

else currnode := parent (currnode)
X.a := f(Y1.a1, ..., Yk.ak)

• where X = env(parent(currnode)), Yi =env(oi) for children nodes

• Inheriting attribute from parent and siblings
– included in update of env (e.g. upon node creation)

generalized to update also node attributes

• Attribute conditions for grammar rules
– included in execute-rules as additional guard to yielding

output

If mode = execute then ...
else If Cond(currnode.a, parent(currnode).b, siblings(currnode).c)

then output:=output * env(currnode)
currnode:= parent(currnode) , mode := select

Johnson/
Moss

Linguistics
&Philosophy
17 (1994)
537-560

© Egon Börger: ASM Refinement Techniques 32

X

m
k-thChild

X

p
j-thChild

X

Tree Adjoining Grammars
Generalizing Parikh’s analysis of context free languages by

pumping of cf trees from basis trees (with terminal yield) and
recursion trees (with terminal yield except for the root variable)

If n=k-thChild(m) &
symb(n)=symb(root(T))

& T ∈ RecTree &
foot(T) = j-thChild(p)

Then

Let T’=new copy(T) in
k-thChild(m):=root(T’)

j-thChild(p’):=n

m
k-thChild

X

p
j-thChild

X

© Egon Börger: ASM Refinement Techniques 33

Looking for invariants to prove ASM refinement correctness

• Idea: find commuting diagrams with end points s, s*

which satisfy an invariant ≈ implying the to be
established equivalence ≡

• Realization: for each pair of corresponding states -
not both final - satisfying ≈, follow the two runs to find
a successor pair s’, s*’ (of corresponding states
satisfying ≈)

• Two cases are possible for such run extensions:
– only one of the two runs can be extended

• the abstract one, producing an (m,0)-diagram
• the refined one, producing a (0,n)-diagram

– both runs can be extended

© Egon Börger: ASM Refinement Techniques 34

Extending runs by triangles and trapezoids

s’. . .

s*’. . .

s*’. . .

s’. . .

≈

s

s*

≈(m,0)-triangle: comp segment
leading in m>0 steps to an s’≈s*

s

s*

≈(0,n)-triangle: comp segment
leading in n>0 steps to an s*’≈s

s

s*

≈

(m,n)-trapezoid: computation
segment leading

in m>0 steps to an s’
in n>0 steps to an s*’

such that s’≈s*’
where m>n or m=n or m<n

© Egon Börger: ASM Refinement Techniques 35

Definition of the forward simulation condition FSC(s,s*)

If s ≈ s* and not both s,s* are final states, then
• either the abstract run can be extended

by an (m,0)-triangle
leading in m>0 steps to an s’≈s* with (s’,s*) <m0 (s,s*)

• or the refined run can be extended
by a (0,n)-triangle
leading in n>0 steps to an s*’≈s with (s,s*’) <0n (s,s*)

• or both runs can be extended
by an (m,n)-trapezoid leading

in m>0 abstract steps to an s’

in n>0 refined steps to an s*’
such that s’≈s*’

NB. A minor modification covers also nondeterministic ASMs

applying triangles
successively

must be well-founded

© Egon Börger: ASM Refinement Techniques 36

Schellhorn’s coupling invariant for correct ASM refinements

Theorem. M* is a correct refinement of M
wrt an equivalence notion ≡ and a notion of initial/final states

if there is a relation ≈ such that
• the coupling invariant ≈ implies equivalence ≡
• each refined initial state s* is coupled by the

invariant to an abstract initial state s≈s*
• the forward simulation condition FSC holds for

every pair (s,s*) of abstract and refined states

This theorem constitutes the basis of:
G. Schellhorn, W. Ahrendt: The WAM Case Study: Verifying Compiler Correctness for

Prolog with KIV. In W.Bibel, P. Schmitt (Eds): Automated Deduction – A Basis for
Applications. Vol.3, Ch.3, Kluwer 1998

G. Schellhorn, W. Ahrendt: Reasoning About Abstract State Machines: The WAM
Case Study. JUCS 3 (4) 1997, 377-413

© Egon Börger: ASM Refinement Techniques 37

Exercise

• Prove that in the correctness definition of ASM
refinements one can assume without loss of
generality that the sequences of corresponding
states are minimal, in the sense that between two
sequence elements there are no other equivalent
states
– i.e. there are no ik<i< ik+1 , jk<j< ik+1 with S(i) ≡ S*(j)

© Egon Börger: ASM Refinement Techniques 38

References

AsmBook E. Börger, R. Stärk: Abstract State Machines.
A Method for High-Level System Design and
Analysis Springer-Verlag 2003, see
http://www.di.unipi.it/AsmBook

ASM Refinement Case Study Book R. Stärk, J. Schmid, E. Börger
Java and the Java Virtual Machine: Definition, Verification,
Validation Springer 2001, see http://www.inf.ethz.ch/~jbook

ASM Refinement Analysis G. Schellhorn Verification of ASM
Refinements Using Generalized Forward Simulation J. Universal
Computer Science 7 (11) 2001

ASM Survey E. Börger High Level System Design and Analysis
using ASMs LNCS Vol. 1012 (1999), pp. 1-43

ASM History E. Börger The Origins and the Development of the ASM
Method for High Level System Design and Analysis JUCS 8 (1) 2002

© Egon Börger: ASM Refinement Techniques 39

References on Backtracking Machine
• E.Börger and D. Rosenzweig: Mathematical Definition

of Full Prolog
– In: Science of Computer Programming 24 (1995) 249-286

• E.Börger and R.F.Salamone: CLAM Specification for
Provably Correct Compilation of CLP (R) Programs
– In: E.Börger (Ed.) Specification and Validation Methods.

Oxford University Press, 1995, 97-130
• E.Börger, F.J.Lopez-Fraguas, M.Rodrigues-Artalejo: A

Model for Mathematical Analysis of Functional
Programs and their Implementations
– In: B.Pehrson and I.Simon (Eds.): IFIP 13 World Computer

Congress 1994, Vol.I: Technology/Foundations, 410-415
• D. Johnson and L. Moss: Grammar Formalisms

Viewed als Evolving Algebras
– Linguistics and Philosophy 17 (1994) 537-560

© Egon Börger: ASM Refinement Techniques 40

References

Four Books on Refinement Methods
J. Derrick, E. Boiten Refinement in Z and Object-Z Springer-

Verlag 2001
W. de Roever, K. Engelhardt Data Refinement: Model-Oriented

Proof Methods and their Comparison Cambridge University
Press 1998

J. C. P. Woodcock, J. Davies Using Z: Specification, Refinement,
and Proof Prentice-Hall 1996

R. J. R. Back, J. von Wright Refinement Calculus: A Systematic
Introduction Springer 1998

